Skip to main content
Log in

The influence of low indium composition ratio on sol–gel solution-deposited amorphous zinc oxide thin film transistors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we examined the influence of In doping on the morphological and structural characteristics of ZnO active layers grown by the spin coating and the electrical performance of ZnO-based thin film transistors. XRD results indicated that the active layers were amorphous due to the absence of any sharp peaks. XPS analysis was carried out to determine indium amounts as an atomic percentage in ZnO and oxidation state of In. AFM images indicated that the roughness of the active layers decreased with increasing indium concentration in ZnO. The indium doping has dramatically improved the electrical parameters of ZnO-based transistors. The field-effect mobility of undoped TFT increased ~ 157 times by adding %3 In content. The highest field-effect mobility (μsat) of 12.9 cm2V−1 s−1 was obtained for %3 In-doped ZnO TFT (IZO3). Also IZO3 has a 6.96 V threshold voltage (Vth), 106Ion/Ioff ratio, 1.98 V/dec subthreshold slope (SS), and a high on-current of 4.6 mA. We ascribed the performance enhancement of devices with In doping due to increasing carrier concentration of channel. These results show that the low concentration of indium incorporation is very crucial to change the morphological properties of ZnO active layers and to obtain high-performance solution-processed TFTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.Y. Won, Y.H. Han, H.J. Seol, K.J. Lee, R. Choi, J.K. Jeong, Transport property improvements of amorphous In-Zn-O transistors with printed Cu contacts via rapid temperature annealing. Thin Solid Films 603, 268–271 (2016)

    CAS  Google Scholar 

  2. T.S. Jung, S.J. Kim, C.H. Kim, J. Jung, J. Na, M.M. Sabri, H.J. Kim, Replacement and rearrangement of an oxide lattice by germanium doping in solution-processed indium-zinc-oxide thin-film. IEEE Trans. Electron Dev. 62, 2888–2893 (2015)

    CAS  Google Scholar 

  3. B. Du Ahn, H.J. Jeon, J. Sheng, J. Park, J.S. Park, A review on the recent developments of solution processes for oxide thin film transistors. Semicond. Sci. Technol. 30, 064001 (2015)

    Google Scholar 

  4. R.A. Street, T.N. Ng, R.A. Lujan, I. Son, M. Smith, S. Kim, T. Lee, Y. Moon, S. Cho, Sol-gel solution-deposited InGaZnO thin film transistors. ACS Appl. Mater. Interfaces. 6, 4428–4437 (2014)

    CAS  Google Scholar 

  5. X. Li, E. Xin, J. Zhang, Effects of Hf incorporation on indium zinc oxide thin-film transistors using solution process. Electron. Mater. Lett. 11, 143–148 (2015)

    Google Scholar 

  6. M.A. Islam, K.S. Rahman, F. Haque, N.A. Khan, M. Akhtaruzzaman, M.M. Alam, H. Ruslan, K. Sopian, N. Amin, Effect of Sn doping on the properties of nano-structured ZnO thin films deposited by Co-sputtering technique. J. Nanosci. Nanotechnol. 15, 9184–9191 (2015)

    CAS  Google Scholar 

  7. C.-Y. Tsay, K.-S. Fan, Optimization of Zr-doped ZnO thin films prepared by sol–gel method. Mater. Trans. 49(8), 1900–1904 (2008)

    CAS  Google Scholar 

  8. R.L. Hoffman, B.J. Norris, J.F. Wager, ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 82, 733–735 (2003)

    CAS  Google Scholar 

  9. C.H. Ahn, S.H. Kim, Y.K. Kim, H.S. Lee, H.K. Cho, Effect of post-annealing temperatures on thin-film transistors with ZnO/Al2O3 superlattice channels. Thin solid flims (Elsevier, Amsterdam, 2015), pp. 336–340

    Google Scholar 

  10. L. Tian, D. Zhou, Y. Ma, X. Zhang, Y. Wang, Effects of annealing temperature on the electrical characteristics of Li–N co-doped polycrystalline ZnO thin film transistors. Superlatt. Microstruct. 109, 279–285 (2017)

    CAS  Google Scholar 

  11. S.Y. Park, B.J. Kim, K. Kim, M.S. Kang, K.-H. Lim, T. Il Lee, J.M. Myoung, H.K. Baik, J.H. Cho, Y.S. Kim, Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors. Adv. Mater. 24, 834–838 (2012)

    CAS  Google Scholar 

  12. X. Zhang, H. Lee, J.-H. Kwon, E.-J. Kim, J. Park, Low-concentration indium doping in solution-processed zinc oxide films for thin-film transistors. Materials (Basel). 10, 880 (2017)

    Google Scholar 

  13. C. Klingshirn, ZnO: material, physics and applications. ChemPhysChem 8, 782–803 (2007)

    CAS  Google Scholar 

  14. R. Biswal, A. Maldonado, J. Vega-Pérez, D. Acosta, M. De La Luz Olvera, Indium doped zinc oxide thin films deposited by ultrasonic chemical spray technique, starting from zinc acetylacetonate and indium chloride. Materials (Basel). 7, 5038–5046 (2014)

    CAS  Google Scholar 

  15. S. Major, K.L. Chopra, Indium-doped zinc oxide films as transparent electrodes for solar cells. Sol. Energy Mater. 17, 319–327 (1988)

    CAS  Google Scholar 

  16. C. Zhang, D. Xiong, S. Xu, W. Ouyang, L. Wang, P.K. Chu, Highly efficient field emission from indium-doped ZnO nanostructure on nanographene/macroporous electric conductive network. Mater. Lett. 222, 25–28 (2018)

    CAS  Google Scholar 

  17. R. Hadj-Tahar, A.B. Mohamed, Sol–gel processed indium-doped zinc oxide thin films and their electrical and optical properties. New J. Glas. Ceram. 4, 55–65 (2014)

    Google Scholar 

  18. C.Y. Tsay, H.C. Cheng, Y.T. Tung, W.H. Tuan, C.K. Lin, Effect of Sn-doped on microstructural and optical properties of ZnO thin films deposited by sol–gel method. Thin Solid Films 517, 1032–1036 (2008)

    CAS  Google Scholar 

  19. S. Krehula, M. Ristić, M. Reissner, S. Kubuki, S. Musić, Synthesis and properties of indium-doped hematite. J. Alloys Compd. 695, 1900–1907 (2017)

    CAS  Google Scholar 

  20. J.-S. Hong, B.-R. Rhee, J.-J. Kim, S.-H. Park, H.-M. Kim, J.-S. Ahn, Highly transparent and conducting In$_2$O$_3$-ZnO thin films prepared by electron-beam evaporation technique. J. Korean Phys. Soc. 45, 712–715 (2004)

    Google Scholar 

  21. C.-H. Wu, K.-M. Chang, Y.-M. Chen, B.-W. Huang, Y.-X. Zhang, S.-J. Wang, Using KrF ELA to improve gate-stacked LaAlO3/ZrO2 indium gallium zinc oxide thin-film transistors with novel atmospheric pressure plasma-enhanced chemical vapor deposition technique. J. Nanosci. Nanotechnol. 18, 1917–1921 (2017)

    Google Scholar 

  22. J. Park, T.-J. Ha, W.-J. Cho, Improvement of air stability on solution-processed InZnO thin-film transistors by microwave irradiation and Zn composition ration. Phys. Status Solidi. 212, 1719–1724 (2015)

    CAS  Google Scholar 

  23. J. Choi, J. Park, K.H. Lim, N.K. Cho, J. Lee, S. Jeon, Y.S. Kim, Photosensitivity of InZnO thin-film transistors using a solution process. Appl. Phys. Lett. 109, 132105 (2016)

    Google Scholar 

  24. Y. Caglar, M. Caglar, S. Ilican, XRD, SEM, XPS studies of Sb doped ZnO films and electrical properties of its based Schottky diodes. Optik (Stuttg). 164, 424–432 (2018)

    CAS  Google Scholar 

  25. J. Kim, J.H. Choi, H. Chae, H. Kim, Effect of indium doping on low-voltage ZnO nanocrystal field-effect transistors with ion-gel gate dielectric. Jpn. J. Appl. Phys. 53, 071101 (2014)

    Google Scholar 

  26. S. Ruzgar, M. Caglar, The effect of Sn on electrical performance of zinc oxide based thin film transistor. J. Mater. Sci. Mater. Electron. 30, 485–490 (2019)

    CAS  Google Scholar 

  27. G. Singh, S.B. Shrivastava, D. Jain, S. Pandya, T. Shripathi, V. Ganesan, Effect of indium dop ing on zinc oxide films prepared by chemical spray pyrolysis technique. Bull. Mater. Sci. 33, 581–587 (2010)

    CAS  Google Scholar 

  28. J.H. Lee, B.O. Park, Transparent conducting ZnO:Al, and Sn thin films deposited by the sol-gel method. Thin Solid Films 426, 94–99 (2003)

    CAS  Google Scholar 

  29. F. Liu, C. Qian, J. Sun, P. Liu, Y. Huang, Y. Gao, J. Yang, Solution-processed lithium-doped zinc oxide thin-film transistors at low temperatures between 100 and 300 °C. Appl. Phys. A 122, 311 (2016)

    Google Scholar 

  30. J. Yang, Y. Jiang, L. Li, M. Gao, Structural, morphological, optical and electrical properties of Ga-doped ZnO transparent conducting thin films. Appl. Surf. Sci. 421, 446–452 (2017)

    CAS  Google Scholar 

  31. S.H. Jeong, B.N. Park, S.B. Lee, J.H. Boo, Study on the doping effect of Li-doped ZnO film. Thin Solid Films 516, 5586–5589 (2008)

    CAS  Google Scholar 

  32. G.H. Kim, B. Du Ahn, H.S. Shin, W.H. Jeong, H.J. Kim, H.J. Kim, Effect of indium composition ratio on solution-processed nanocrystalline InGaZnO thin film transistors. Appl. Phys. Lett. 94, 233501 (2009)

    Google Scholar 

  33. I. Noviyana, A.D. Lestari, M. Putri, M.-S. Won, J.-S. Bae, Y.-W. Heo, H.Y. Lee, High mobility thin film transistors based on amorphous indium zinc tin oxide. Materials (Basel). 10, 702 (2017)

    Google Scholar 

  34. K.B. Park, J.B. Seon, G.H. Kim, M. Yang, B. Koo, H.J. Kim, M.K. Ryu, S.Y. Lee, High electrical performance of wet-processed indium zinc oxide thin-film transistors. IEEE Electron Device Lett. 31, 311–313 (2010)

    CAS  Google Scholar 

  35. Z. Yang, J. Yang, T. Meng, M. Qu, Q. Zhang, Influence of channel layer thickness on the stability of amorphous indium zinc oxide thin film transistors. Mater. Lett. 166, 46–50 (2016)

    CAS  Google Scholar 

  36. M. Kumar, H. Jeong, D. Lee, Sol-gel derived Hf- and Mg-doped high-performance ZnO thin film transistors. J. Alloys Compd. 720, 230–238 (2017)

    CAS  Google Scholar 

  37. B.Y. Su, S.Y. Chu, Y. Der Juang, Improved electrical and thermal stability of solution-processed Li-doped ZnO thin-film transistors. IEEE Trans. Electron Devices. 59, 700–704 (2012)

    CAS  Google Scholar 

  38. A.B. Cheremisin, S.N. Kuznetsov, G.B. Stefanovich, Effect of indium low doping in ZnO based TFTs on electrical parameters and bias stress stability. AIP Adv. 5, 117124 (2015)

    Google Scholar 

  39. J.H. Shim, H. Kim, J.H. Lim, J.H. Choi, C.M. Lee, K. Park, J. Joo, H. Kim, H.-J. Lee, M.R. Moon, D. Jung, Fabrication and comparison of the properties of SnInZnO and InZnO TFTs processed by using the flexible and stretchable electronics view project LG chem view project fabrication and comparison of the properties of SnInZnO and InZnO TFTs processed by using the sol–gel method. Artic. J. Korean Phys. Soc. 57, 1847–1851 (2010)

    CAS  Google Scholar 

  40. S. Amano, H. Harada, K. Akimoto, J. Sakata, T. Nishi, K. Moriya, K. Wakimoto, J. Koyama, S. Yamazaki, Y. Oikawa, T. Ikeyama, M. Sakakura, Low power LC display using In-Ga-Zn-oxide TFTs based on variable frame frequency. SID Symp. Dig. Tech. Pap. 41, 626 (2010)

    CAS  Google Scholar 

  41. M. Kumar, H. Jeong, D. Lee, Solution-processed undoped and Indium doped ZnO thin film transistors: role of Ag nanowires into InZnO channel layer. Semicond. Sci. Technol. 34, 075019 (2019)

    CAS  Google Scholar 

  42. Z. Zhu, B. Li, J. Wen, Z. Chen, Z. Chen, R. Zhang, S. Ye, G. Fang, J. Qian, Indium-doped ZnO horizontal nanorods for high on-current field effect transistors. RSC Adv. 7, 54928–54933 (2017)

    CAS  Google Scholar 

  43. Y. Wu, E. Girgis, V. Ström, W. Voit, L. Belova, K.V. Rao, Ultraviolet light sensitive In-doped ZnO thin film field effect transistor printed by inkjet technique. Phys. Status Solidi. 208, 206–209 (2011)

    CAS  Google Scholar 

  44. J. Il Song, J.S. Park, H. Kim, Y.W. Heo, J.H. Lee, J.J. Kim, G.M. Kim, B.D. Choi, Transparent amorphous indium zinc oxide thin-film transistors fabricated at room temperature. Appl. Phys. Lett. 90, 022106 (2007)

    Google Scholar 

  45. Z. Yang, N. Wang, M. Qu, H. Pu, Q. Zhang, Preparation and characterization of molybdenum-doped indium-zinc-oxide thin film transistors. Semicond. Sci. Technol. 30(4), 045008 (2015)

    Google Scholar 

  46. R. Xu, J. He, W. Li, D.C. Paine, Performance enhancement of amorphous indium-zinc-oxide thin film transistors by microwave annealing. Appl. Surf. Sci. 357, 1915–1919 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Eskisehir Technical University Commission of Scientific Research Projects under Grant No. 1706F385.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mujdat Caglar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruzgar, S., Caglar, Y. & Caglar, M. The influence of low indium composition ratio on sol–gel solution-deposited amorphous zinc oxide thin film transistors. J Mater Sci: Mater Electron 31, 11720–11728 (2020). https://doi.org/10.1007/s10854-020-03723-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03723-x

Navigation