Skip to main content
Log in

Polyethylene: graphene—a magnetic tunable metacomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metacomposites are an interesting field of research. This research is regarding tunable magnetic metacomposite formed using graphene and polyethylene (PE). Dielectric measurements show that as the concentration of graphene was increased in PE–graphene nanocomposites, the separation between graphene sheets decreased and negative dielectric constant was observed at low frequencies while high dielectric constant was observed at high frequencies of the applied field. The switching frequency could be controlled by changing the graphene concentrations. Small angle neutron scattering (SANS) analysis showed that the graphene assembled as fractals in the nanocomposites. As more graphene was incorporated into the nanocomposites, the fractals gave rise to percolation. We propose that the fractals are the building blocks for percolation phenomenon in the PE–graphene nanocomposites. Also, we observed ferromagnetism in the PE–graphene nanocomposites till 30% graphene. At 40% graphene the nanocomposite becomes a diamagnet. We attribute this to the topological defects induced in graphene by PE. Theses PE–graphene magnetic meta composites can have potential applications in battery technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P.V. Wright, Electrical conductivity in ionic complexes of poly (ethylene oxide). Br Polym J. 7(5), 319–325 (1975)

    CAS  Google Scholar 

  2. B. Smitha, S. Sridhar, A.A. Khan, Solid polymer electrolyte membranes for fuel cell applications—a review. J. Membr. Sci. 259(1–2), 10–26 (2005)

    CAS  Google Scholar 

  3. E. Quartarone, P. Mustarelli, Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev. 40(5), 2525–2540 (2011)

    CAS  Google Scholar 

  4. S.S. Zhang, A review on electrolyte additives for lithium-ion batteries. J Power Sources. 162, 1379–1394 (2006)

    CAS  Google Scholar 

  5. C.P. Fonseca, D.S. Rosa, F. Gaboardi, S. Neves, Development of a biodegradable polymer electrolyte for rechargeable batteries. J. Power Sources. 155, 381–384 (2006)

    CAS  Google Scholar 

  6. J. Kim, N. Wang, Y. Chen, Effect of chitosan and ions on actuation behavior of cellulose-laminated films as electro-active paper actuators. Cellulose 14, 439–445 (2007)

    CAS  Google Scholar 

  7. Y.N. Sudhakar, M. Selvakumar, Ionic conductivity studies and dielectric studies of Poly(styrene sulphonic acid)/starch blend polymer electrolyte containing LiClO4. J. Appl. Electrochem. 43, 21–29 (2013)

    CAS  Google Scholar 

  8. O.G. Piringer, A.L. Baner, Plastic Packaging: Interactions with Food and Pharmaceuticals, 2nd edn. (Berlin, Wiley-VCH, 2008)

    Google Scholar 

  9. A.K. Geim, K.S. Novoselov, The rise of graphene. Nanosci Technol (2010). https://doi.org/10.1142/9789814287005_0002

    Article  Google Scholar 

  10. K.S. Novoselov, A.K. Geim, S.V. Morozov, D.A. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    CAS  Google Scholar 

  11. K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005)

    CAS  Google Scholar 

  12. Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438(7065), 201–204 (2005)

    CAS  Google Scholar 

  13. H.K. Chae, D.Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A.J. Matzger, M. Okeeffe, O.M. Yaghi, A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427(6974), 523–527 (2004)

    CAS  Google Scholar 

  14. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006)

    CAS  Google Scholar 

  15. G. Wang, B. Wang, X. Wang, J. Park, S. Dou, H. Ahn, K. Kim, Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J. Mater. Chem. 19(44), 8378–8384 (2009)

    CAS  Google Scholar 

  16. R.P. Ramasamy, K. Yang, M.H. Rafailovich, Polypropylene–graphene–a nanocomposite that can be converted into a meta-material at desired frequencies. RSC Adv. 4(85), 44888–44895 (2014)

    Google Scholar 

  17. K. Yang, M. Endoh, R. Trojanowski, R.P. Ramasamy, M.M. Gentleman, T.A. Butcher, M.H. Rafailovich, The thermo-mechanical response of PP nanocomposites at high graphene loading. Nanocomposites. 1(3), 126–137 (2015)

    CAS  Google Scholar 

  18. Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, Y. Chen, Room-temperature ferromagnetism of graphene. Nano Lett. 9(1), 220–224 (2008)

    Google Scholar 

  19. F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene. ACS Nano 5(1), 26–41 (2010)

    Google Scholar 

  20. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473(5–6), 51–87 (2009)

    CAS  Google Scholar 

  21. R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M.S. Dresselhaus, Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60(3), 413–550 (2011)

    CAS  Google Scholar 

  22. A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143(1–2), 47–57 (2007)

    CAS  Google Scholar 

  23. Lucchese, M. M.; Stavale, F.; Ferreira, E. H.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in

  24. graphene. Carbon. 2010, 48(5), 1592–1597.

  25. A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamond like carbon. Phys. Rev. B. 64(7), 075414 (2001)

    Google Scholar 

  26. A.C. Ferrari, J. Robinson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B. 61(20), 14095 (2000)

    CAS  Google Scholar 

  27. E.H. Martins Ferreira, M.V.O. Moutinho, F. Stavale, M.M. Lucchese, R.B. Capaz, C.A. Achete, A. Jorio, Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B. 82(12), 125429 (2010)

    Google Scholar 

  28. L.G. Cançado, A. Jorio, E.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11(8), 3190–3196 (2011)

    Google Scholar 

  29. M.J. Gall, P.J. Hendra, O.J. Peacock, M.E. Cudby, H.A. Willis, The laser-Raman spectrum of polyethylene: The assignment of the spectrum to fundamental modes of vibration. Spectrochim. Acta Part A 28(8), 1485–1496 (1972)

    CAS  Google Scholar 

  30. Gall, M.J.; Hendra, P.J.; Peacock, C.J.; Cudby, M.E.; Willis, H.A. Laser-Raman spectrum of polyethylene: Part 1. Structure and analysis of the polymer. Polymer. 1972, 13(3), 104–108.

  31. R.T. Bailey, A.J. Hyde, J.J. Kim, J. McLeish, Raman studies on oriented, high modulus, polyethylene. Spectrochim. Acta Part A 33(12), 1053–1058 (1977)

    Google Scholar 

  32. J.H. Schachtschneider, R.G. Snyder, Vibrational analysis of the n-paraffins—II: normal co-ordinate calculations. Spectrochim. Acta 19(1), 117–168 (1963)

    CAS  Google Scholar 

  33. T. Kida, Y. Hiejima, K.H. Nitta, Raman spectroscopic study of high-density polyethylene during tensile deformation. Int. J. Exp. Spectrosc. Tech. (2016). https://doi.org/10.35840/2631-505X/8501

    Article  Google Scholar 

  34. J.B. Hayter, J. Penfold, Determination of micelle structure and charge by neutron small-angle scattering. Colloid Polym. Sci. 261(12), 1022–1030 (1983)

    CAS  Google Scholar 

  35. S. Amir, S.A. Hashim Ali, N.S. Binti Mohamed, Studies of fractal growth patterns in poly(ethylene oxide) and chitosan membranes. Ionics 17(2), 121–125 (2011)

    CAS  Google Scholar 

  36. H.C. Wong, J.T. Cabral, Nanoparticle aggregation behaviour in polymer nanocomposites: bulk vs. thin films. J. Phys. 247(1), 012046 (2010)

    Google Scholar 

  37. M.F. Butler, R.E. Cameron, A study of the molecular relaxations in solid starch using dielectric spectroscopy. Polymer 41(6), 2249–2263 (2000)

    CAS  Google Scholar 

  38. J. Einfiled, D. Meiβner, A. Kwasniewski, Polymerdynamics of cellulose and other polysaccharides in solid state-secondary dielectric relaxation processes. Prog. Polym. Sci. 26(9), 1419–1472 (2001)

    Google Scholar 

  39. J. Einfeldt, D. Meißner, A. Kwasniewski, Contributions to the molecular origin of the dielectric relaxation processes in polysaccharides–the high temperature range. J. Non-Cryst. Solids 320(1–3), 40–55 (2003)

    CAS  Google Scholar 

  40. T.P. Majumder, D. Meiβner, C. Schick, Dielectric processes of wet and well-dried wheat starch. Carbohyd. Polym. 56(3), 361–366 (2004)

    CAS  Google Scholar 

  41. G.K. Moates, T.R. Noel, R. Parker, S.G. Ring, Dynamic mechanical and dielectric characterisation of amylose–glycerol films. Carbohyd. Polym. 44(3), 247–253 (2001)

    CAS  Google Scholar 

  42. A.L.M. Smits, M. Wübbenhorst, P.H. Kruiskamp, J.J.G. Van Soest, J.F.G. Vliegenthart, J. Van Turnhout, Structure evolution in amylopectin/ethylene glycol mixtures by H-bond formation and phase separation studied with dielectric relaxation spectroscopy. J. Phys. Chem. B 105(24), 5630–5636 (2001)

    CAS  Google Scholar 

  43. M.T. Viciosa, M. Dionisio, R.M. Silva, R.L. Reis, J.F. Mano, Molecular motions in chitosan studied by dielectric relaxation spectroscopy. Biomacromol 5(5), 2073–2078 (2004)

    CAS  Google Scholar 

  44. G. Sui, B. Li, G. Bratzel, L. Baker, W.H. Zhong, X.P. Yang, Carbon nanofiber/polyetherimide composite membranes with special dielectric properties. Soft Matter 5(19), 3593–3598 (2009)

    CAS  Google Scholar 

  45. Z.M. Dang, Y.H. Lin, C.W. Nan, Novel ferroelectric polymer composites with high dielectric constants. Adv. Mater. 15(19), 1625–1629 (2003)

    CAS  Google Scholar 

  46. Z.M. Dang, L. Wang, Y.I. Yin, Q. Zhang, Q.Q. Lei, Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv. Mater. 19(6), 852–857 (2007)

    CAS  Google Scholar 

  47. F. He, S. Lau, H.L. Chan, J. Fan, High dielectric permittivity and low percolation threshold in nanocomposites based on poly (vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 21(6), 710–715 (2009)

    CAS  Google Scholar 

  48. D. Wang, T. Zhou, J.W. Zha, J. Zhao, C.Y. Shi, Z.M. Dang, Functionalized graphene–BaTiO3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold. J. Mater. Chem. A. 1(20), 6162–6168 (2013)

    CAS  Google Scholar 

  49. S.S. Gevorgian, A.K. Tagantsev, A.K. Vorobiev, Tuneable Film Bulk Acoustic Wave Resonators, Engineering Materials and Processes (Springer, London, 2013)

    Google Scholar 

  50. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267(5613), 673 (1977)

    CAS  Google Scholar 

  51. A.K. Jonscher, Frequency-dependence of conductivity in hopping systems. J. Non-Cryst. Solids 8, 293–315 (1972)

    Google Scholar 

  52. C.W. Nan, Physics of inhomogeneous inorganic materials. Prog. Mater Sci. 37(1), 1–16 (1993)

    CAS  Google Scholar 

  53. R. Singh, Unexpected magnetism in nanomaterials. J. Magn. Magn. Mater. 346, 58–73 (2013)

    CAS  Google Scholar 

  54. J. Zhou, Q. Wang, Q. Sun, X.S. Chen, Y. Kawazoe, P. Jena, Ferromagnetism in semihydrogenated graphene sheet. Nano Lett. 9(11), 3867–3870 (2009)

    CAS  Google Scholar 

  55. O.V. Yazyev, L. Helm, Defect-induced magnetism in graphene. Phys. Rev. B. 75(12), 125408 (2007)

    Google Scholar 

  56. J. Fernández-Rossier, J.J. Palacios, Magnetism in graphene nanoislands. Phys. Rev. Lett. 99(17), 177204 (2007)

    Google Scholar 

  57. B. Xu, J. Yin, Y.D. Xia, X.G. Wan, K. Jiang, Z.G. Liu, Electronic and magnetic properties of zigzag graphene nanoribbon with one edge saturated. Appl. Phys. Lett. 96(16), 163102 (2010)

    Google Scholar 

  58. M.A. Vozmediano, M.P. López-Sancho, T. Stauber, F. Guinea, Local defects and ferromagnetism in graphene layers. Phys. Rev. B. 72(15), 155121 (2005)

    Google Scholar 

  59. E.J. Santos, D. Sánchez-Portal, A. Ayuela, Magnetism of substitutional Co impurities in graphene: realization of single π vacancies. Phys. Rev. B. 81(12), 125433 (2010)

    Google Scholar 

  60. M. Kan, J. Zhou, Q. Sun, Q. Wang, Y. Kawazoe, P. Jena, Tuning magnetic properties of graphene nanoribbons with topological line defects: from antiferromagnetic to ferromagnetic. Phys. Rev. B. 85(15), 155450 (2012)

    Google Scholar 

  61. O.V. Yazyev, Magnetism in disordered graphene and irradiated graphite. Phys. Rev. Lett. 101(3), 037203 (2008)

    Google Scholar 

  62. L. Kou, C. Tang, W. Guo, C. Chen, Tunable magnetism in strained graphene with topological line defect. ACS Nano 5(2), 1012–1017 (2011)

    CAS  Google Scholar 

Download references

Acknowledgments

The research was made possible due to funding provided by UGC-DAE-CSR project (CRS-M-216) India. One of the authors (Radha Perumal Ramasamy) would like to thank University Grants Commission–INDIA for providing Raman fellowship for Postdoctoral Studies in USA during 2013–2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radha Perumal Ramasamy.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramasamy, R.P., Aswal, V.K., Rafailovich, M.H. et al. Polyethylene: graphene—a magnetic tunable metacomposite. J Mater Sci: Mater Electron 31, 18344–18359 (2020). https://doi.org/10.1007/s10854-020-04380-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04380-w

Navigation