Skip to main content
Log in

Facile synthesis of RGO-Fe2O3 nanocomposite: A novel catalyzing agent for composite propellants

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Whereas ferric oxide particles are common catalyst for energetic oxidizers such as ammonium perchlorate (APC), reduced graphene oxide (RGO) with superior thermal conductivity as well as high interfacial surface area could be candidate substrate for advanced catalytic systems. This study reports on the facile synthesis of RGO-Fe2O3 nanocomposite as a novel catalyzing agent for APC oxidizer. GO was developed via oxidation of graphite using Hummer’s method, while RGO was developed via GO reduction with hydrazine hydrate. RGO-Fe2O3 nanocomposite was developed via direct precipitation method. Morphological characterization of RGO-Fe2O3 nanocomposite demonstrated the formation of hematite RGO-Fe2O3 nanocomposite in the form of rod-shaped crystals with average crystallite size 30 nm. The synthesized RGO-Fe2O3 nanocomposite was effectively-encapsulated into APC particles via co-precipitation technique. The catalytic performance of RGO-Fe2O3 nanocomposite on APC thermal behavior was evaluated using DSC and TGA. RGO-Fe2O3 nanocomposite demonstrated superior catalytic performance; APC initial endothermic decomposition was decreased by 16% which could be ascribed to enhance the thermal conductivity and catalytic efficiency of the developed hybrid. APC total heat release was enhanced by 83%; this could be ascribed to superior interfacial surface area. Gaseous products could be efficiently-adsorbed on the catalyst surface offering high combustion enthalpy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Elbasuney, M. Yehia, M.G. Zaky, M. Radwan, MWNTs coated with CuO particles: a novel nano-catalyst for solid propellants. J. Inorg. Organomet. Polym Mater. 29, 2064–2071 (2019)

    Article  CAS  Google Scholar 

  2. Q.-L. Yan, M. Gozin, F.-Q. Zhao, A. Cohen, S.-P. Pang, Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale 8, 4799–4851 (2016)

    Article  CAS  Google Scholar 

  3. W. Wang, D. Zhang, A kinetic investigation on the thermal decomposition of propellants catalyzed by rGO/MFe2O4 (M = Cu Co, Ni, Zn) nanohybrids. J. Saudi Chem. Soc. 23, 627–635 (2019)

    Article  CAS  Google Scholar 

  4. S. Elbasuney, M. Gobara, M.G. Zaky, M. Radwan, A. Maraden, S. Ismael, E. Elsaka, M. Abd Elkodous, G.S. El-Sayyad, Synthesis of CuO-distributed carbon nanofiber: alternative hybrid for solid propellants. J. Mater. Sci.: Mater. Electron. 31, 8212–8219 (2020)

    CAS  Google Scholar 

  5. S. Pattnaik, K. Swain, Z. Lin, Graphene and graphene-based nanocomposites: biomedical applications and biosafety. J. Mater. Chem. B 4, 7813–7831 (2016)

    Article  CAS  Google Scholar 

  6. J. Shen, M. Shi, B. Yan, H. Ma, N. Li, M. Ye, One-pot hydrothermal synthesis of Ag-reduced graphene oxide composite with ionic liquid. J. Mater. Chem. 21, 7795–7801 (2011)

    Article  CAS  Google Scholar 

  7. S. Elbasuney, A.A. Elmotaz, M. Sadek, H. Tantawy, S. Ismael, M. Gobara, S. Farag, G.S. El-Sayyad, Novel nanocomposite decoy flare based on super-thermite and graphite particles. J. Mater. Sci.: Mater. Electron. 31, 6130–6139 (2020)

    CAS  Google Scholar 

  8. A.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 1, 31–47 (2019)

    Article  Google Scholar 

  9. S.C. Schirtzinger, Effects of Carbon Materials as Additives on the Combustion Behavior of Double-Base Propellant (2017)

  10. S. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coord. Chem. Rev. 312, 99–148 (2016)

    Article  CAS  Google Scholar 

  11. A.M. Elghafour, M.A. Radwan, H.E. Mostafa, A. Fahd, S. Elbasuney, Highly energetic nitramines: a novel platonizing agent for double-base propellants with superior combustion characteristics. Fuel 227, 478–484 (2018)

    Article  CAS  Google Scholar 

  12. S. Elbasuney, A. Fahd, H.E. Mostafa, Combustion characteristics of extruded double base propellant based on ammonium perchlorate/aluminum binary mixture. Fuel 208, 296–304 (2017)

    Article  CAS  Google Scholar 

  13. S. Elbasuney, M. Yehia, Ferric oxide colloid: a novel nano-catalyst for solid propellants. J. Inorg. Organomet. Polym Mater. 30, 706–713 (2020)

    Article  CAS  Google Scholar 

  14. M. Kohga, S. Togo, Catalytic effect of added Fe2O3 amount on thermal decomposition behaviors and burning characteristics of ammonium nitrate/ammonium perchlorate propellants. Combust. Sci. Technol. 192, 1668–1681 (2019)

    Article  Google Scholar 

  15. J.-X. Liu, F.-S. Li, A.-S. Chen, Y.-L. Yang, Z.-Y. Ma, Preparation of Fe2O3 nanoparticles and its catalytic effect on thermal decomposition of ammonium perchlorate (AP). J. Propuls. Technol. Beijing 27, 381 (2006)

    CAS  Google Scholar 

  16. S. Elbasuney, M. Yehia, Ammonium perchlorate encapsulated with TiO2 nanocomposite for catalyzed combustion reactions. J. Inorg. Organomet. Polym Mater. 29, 1349–1357 (2019)

    Article  CAS  Google Scholar 

  17. S. Elbasuney, M. Yehia, Thermal decomposition of ammonium perchlorate catalyzed with CuO nanoparticles. Def. Technol. 15, 868–874 (2019)

    Article  Google Scholar 

  18. P. Cui, A.-J. Wang, Synthesis of CNTs/CuO and its catalytic performance on the thermal decomposition of ammonium perchlorate. J. Saudi Chem. Soc. 20, 343–348 (2016)

    Article  CAS  Google Scholar 

  19. S. Elbasuney, M. Gobara, M. Yehia, Ferrite nanoparticles: synthesis, characterization, and catalytic activity evaluation for solid rocket propulsion systems. J. Inorg. Organomet. Polym Mater. 29, 721–729 (2019)

    Article  CAS  Google Scholar 

  20. Z. Ma, F. Li, H. Bai, Effect of Fe2O3 in Fe2O3/AP composite particles on thermal decomposition of AP and on burning rate of the composite propellant. Propellants Explos. Pyrotech.: Int. J. Dealing Sci. Technol. Asp. Energ. Mater. 31, 447–451 (2006)

    Article  CAS  Google Scholar 

  21. M. Mahinroosta, Catalytic effect of commercial nano-CuO and nano-Fe2O3 on thermal decomposition of ammonium perchlorate. J. Nanostruct. Chem. 3, 47 (2013)

    Article  Google Scholar 

  22. T. Jiang, Y. Wang, D. Meng, X. Wu, J. Wang, J. Chen, Controllable fabrication of CuO nanostructure by hydrothermal method and its properties. Appl. Surf. Sci. 311, 602–608 (2014)

    Article  CAS  Google Scholar 

  23. Y. Wang, T. Jiang, D. Meng, J. Yang, Y. Li, Q. Ma, J. Han, Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties. Appl. Surf. Sci. 317, 414–421 (2014)

    Article  CAS  Google Scholar 

  24. H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6, 36143 (2016)

    Article  CAS  Google Scholar 

  25. V.C. Karade, S.B. Parit, V.V. Dawkar, R.S. Devan, R.J. Choudhary, V.V. Kedge, N.V. Pawar, J.H. Kim, A.D. Chougale, A green approach for the synthesis of α-Fe2O3 nanoparticles from Gardenia resinifera plant and it’s In vitro hyperthermia application. Heliyon 5, e02044 (2019)

    Article  CAS  Google Scholar 

  26. H. Saleem, M. Haneef, H.Y. Abbasi, Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Mater. Chem. Phys. 204, 1–7 (2018)

    Article  CAS  Google Scholar 

  27. M. Strankowski, D. Włodarczyk, Ł. Piszczyk, J. Strankowska, Polyurethane nanocomposites containing reduced graphene oxide, FTIR, Raman, and XRD studies. J. Spectrosc. (2016). https://doi.org/10.1155/2016/7520741

    Article  Google Scholar 

  28. C. Manoratne, S. Rosa, I. Kottegoda, XRD-HTA, UV visible, FTIR and SEM interpretation of reduced graphene oxide synthesized from high purity vein graphite. Mater. Sci. Res. India 14, 19–30 (2017)

    Article  CAS  Google Scholar 

  29. X. Lv, G. Liang, Y. Li, H. Duan, D. Chen, M. Long, Properties and microstructure of copper and/or nickel supported on GO, rGO, and NGO, in: Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies, Springer, Cham, 2020, pp. 127–135

  30. Z. Luo, C. Qin, Y. Wu, W. Xu, S. Zhang, A. Lu, Structure and properties of Fe2O3-doped 50Li2O-10B2O3-40P2O5 glass and glass-ceramic electrolytes. Solid State Ion. 345, 115177 (2020)

    Article  CAS  Google Scholar 

  31. O.N. Shebanova, P. Lazor, Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J. Solid State Chem. 174, 424–430 (2003)

    Article  CAS  Google Scholar 

  32. W. Su, T. Lin, W. Chu, Y. Zhu, J. Li, X. Zhao, Novel synthesis of RGO/NiCoAl–LDH nanosheets on nickel foam for supercapacitors with high capacitance. RSC Adv. 6, 113123–113131 (2016)

    Article  CAS  Google Scholar 

  33. F.M. Mosallam, G.S. El-Sayyad, R.M. Fathy, A.I. El-Batal, Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microb. Pathog. 122, 108–116 (2018)

    Article  CAS  Google Scholar 

  34. M.A. Maksoud, G.S. El-Sayyad, A. Ashour, A.I. El-Batal, M.S. Abd-Elmonem, H.A. Hendawy, E. Abdel-Khalek, S. Labib, E. Abdeltwab, M. El-Okr, Synthesis and characterization of metals-substituted cobalt ferrite [Mx Co(1-x) Fe2O4;(M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng., C 92, 644–656 (2018)

    Article  Google Scholar 

  35. A. Ashour, A.I. El-Batal, M.A. Maksoud, G.S. El-Sayyad, S. Labib, E. Abdeltwab, M. El-Okr, Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018)

    Article  CAS  Google Scholar 

  36. A. Baraka, S. Dickson, M. Gobara, G.S. El-Sayyad, M. Zorainy, M.I. Awaad, H. Hatem, M.M. Kotb, A. Tawfic, Synthesis of silver nanoparticles using natural pigments extracted from Alfalfa leaves and its use for antimicrobial activity. Chem. Pap. 71, 2271–2281 (2017)

    Article  CAS  Google Scholar 

  37. L. Bircumshaw, B. Newman, The thermal decomposition of ammonium perchlorate, II. The kinetics of the decomposition, the effect of particle size, and discussion of results. Proc. R. Soc. Lond. A 227, 228–241 (1955)

    Article  CAS  Google Scholar 

  38. V. Boldyrev, Thermal decomposition of ammonium perchlorate. Thermochim. Acta 443, 1–36 (2006)

    Article  CAS  Google Scholar 

  39. S. Chaturvedi, P.N. Dave, A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. J. Saudi Chem. Soc. 17, 135–149 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces, Cairo, Egypt and ZEISS microscope team at Cairo, Egypt for their invaluable support of this study. Figures 1, 2, and 12 were created by BioRender program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sherif Elbasuney or Gharieb S. El-Sayyad.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbasuney, S., El-Sayyad, G.S., Yehia, M. et al. Facile synthesis of RGO-Fe2O3 nanocomposite: A novel catalyzing agent for composite propellants. J Mater Sci: Mater Electron 31, 20805–20815 (2020). https://doi.org/10.1007/s10854-020-04593-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04593-z

Navigation