Skip to main content
Log in

The effect of Ce3+ doping on structural, optical, ferromagnetic resonance, and magnetic properties of ZnFe2O4 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, we used the ultrasound irradiation to assist the sol–gel method for the synthesis of spinel ZnCexFe2 − xO4 nanoparticles. The patterns obtained from energy dispersive x-rays (EDX) analysis and elements mapping demonstrate the appropriate elemental stoichiometry and spatial distribution in the prepared samples. The Rietveld refinement patterns revealed the successful synthesis of the cubic-structured ZnFe2 − xCexO4 without any secondary phases. The crystallite size of ZnFe2 − xCexO4 ranged from 7 to 11 nm. Also, the optical bandgap for ZnFe2 − xCexO4 decreased from 2.1 eV to 1.77 eV. Electron paramagnetic resonance (EPR) spectroscopy was used to study the ferromagnetic resonance (FMR) characteristics of the ZnFe2 − xCexO4 samples. The resonance field was increased from 3362.65 Gauss to 3401.76 Gauss, while the line width decreased from 598.90 to 455.72 Gauss. The saturation magnetization was enhanced from 2.43 emu/g for x = 0.00 to 9.38 emu/g for x = 0.02. In addition, the values of coercivity (Hc) and remanence magnetization (Mr) were significantly lowered. The great value of saturation magnetization together with low values of Hc and Mr of Ce3+-substituted Zn ferrites makes them potential candidates for the microwave absorption field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. 117(18), 2842–2845 (2005)

    Article  Google Scholar 

  2. X. Niu, W. Du, W. Du, Preparation and gas sensing properties of ZnM2O4 (M = Fe Co, Cr). Sens. Actuators B Chem. 99(2), 405–409 (2004)

    Article  CAS  Google Scholar 

  3. J.A. Toledo-Antonio, N. Nava, M. Martinez, X. Bokhimi, Correlation between the magnetism of non-stoichiometric zinc ferrites and their catalytic activity for oxidative dehydrogenation of 1-butene. Appl. Catal. A Gen. 234(1); 137-144 (2002).

  4. G. Zhang, C. Li, F. Cheng, J. Chen, ZnFe2O4 tubes: Synthesis and application to gas sensors with high sensitivity and low-energy consumption. Sens. Actuators B Chem. 120(2), 403–410 (2007)

    Article  CAS  Google Scholar 

  5. O.V. Yelenich, S.O. Solopan, T.V. Kolodiazhnyi, V.V. Dzyublyuk, A.I. Tovstolytkin, A.G. Belous, Magnetic properties and high heating efficiency of ZnFe2O4 nanoparticles. Mater. Chem. Phys. 146(1), 129–135 (2014)

    Article  CAS  Google Scholar 

  6. A. Meidanchi, O. Akhavan, Superparamagnetic zinc ferrite spinel–graphene nanostructures for fast wastewater purification. Carbon 69, 230–238 (2014)

    Article  CAS  Google Scholar 

  7. F. Tomás-Alonso, J.M. Palacios, Latasa, Synthesis and surface properties of zinc ferrite species in supported sorbents for coal gas desulphurization. Fuel Processing Technol. 86(2), 191–203 (2004)

    Article  CAS  Google Scholar 

  8. H.S. Hassan, M.I.A. Abdel Maksoud, L.A. Attia, Assessment of zinc ferrite nanocrystals for removal of 134Cs and 152+154Eu radionuclides from nitric acid solution. J. Mater. Sci. 31(2), 1616–1633 (2020)

    CAS  Google Scholar 

  9. K. Sathiyamurthy, C. Rajeevgandhi, S. Bharanidharan, P. Sugumar, S. Subashchandrabose, Electrochemical and magnetic properties of zinc ferrite nanoparticles through chemical co-precipitation method. Chem. Data Collect. 28, 100477 (2020)

    Article  CAS  Google Scholar 

  10. T. Sodaee, A. Ghasemi, R.S. Razavi, Cation distribution and microwave absorptive behavior of gadolinium substituted cobalt ferrite ceramics. J. Alloy. Compd. 706, 133–146 (2017)

    Article  CAS  Google Scholar 

  11. V. Vaithyanathan, K. Ugendar, J. Arout Chelvane, K. Kamala Bharathi, S.S.R. Inbanathan: Structural and magnetic properties of Sn and Ti doped Co ferrite. J. Magnet. Magn. Mater. 382: 88–92 (2015).

  12. R. Islam, M.A. Hakim, M.O. Rahman, H. Narayan Das, M.A. Mamun, Study of the structural, magnetic and electrical properties of Gd-substituted Mn–Zn mixed ferrites. J. Alloys Compd. 559, 174–180 (2013)

    Article  CAS  Google Scholar 

  13. G. Mustafa, M.U. Islam, W. Zhang, Y. Jamil, A.W. Anwar, M. Hussain, M. Ahmad, Investigation of structural and magnetic properties of Ce3+-substituted nanosized Co–Cr ferrites for a variety of applications. J. Alloy. Compd. 618, 428–436 (2015)

    Article  CAS  Google Scholar 

  14. M.I.A. Abdel Maksoud, A. El-Ghandour, A.H. Ashour, M.M. Atta, S. Abdelhaleem, A.H. El-Hanbaly, R.A. Fahim, S.M. Kassem, M.S. Shalaby, A.S. Awed, La3+ doped LiCo0.25Zn0.25Fe2O4 spinel ferrite nanocrystals: Insights on structural, optical and magnetic properties, Journal of Rare Earths (2020).

  15. S. Qamar, M.N. Akhtar, K.M. Batoo, E.H. Raslan, Structural and magnetic features of Ce doped Co-Cu-Zn spinel nanoferrites prepared using sol gel self-ignition method. Ceram. Int. 46(10, Part A), 14481–14487 (2020)

    Article  CAS  Google Scholar 

  16. G. Sberveglieri, Gas Sensors: Principles, Operation and Developments (Springer Science & Business Media, New York, 2012).

    Google Scholar 

  17. I. Weber, A. Maciel, P.N. Lisboa-Filho, E. Longo, E. Leite, C. Paiva-Santos, Y. Maniette, W.H. Schreiner, Effects of synthesis and processing on supersaturated rare earth-doped nanometric SnO2 powders. Nano Lett. 2(9), 969–973 (2002)

    Article  CAS  Google Scholar 

  18. E.R. Leite, A.P. Maciel, I.T. Weber, P.N. Lisboa-Filho, E. Longo, C. Paiva-Santos, A. Andrade, C. Pakoscimas, Y. Maniette, W.H. Schreiner, Development of metal oxide nanoparticles with high stability against particle growth using a metastable solid solution. Adv. Mater. 14(12), 905–908 (2002)

    Article  CAS  Google Scholar 

  19. S. Basu, P.S. Devi, H.S. Maiti, Synthesis and properties of nanocrystalline ceria powders. J. Mater. Res. 19(11), 3162–3171 (2004)

    Article  CAS  Google Scholar 

  20. J.Y. Patil, D.Y. Nadargi, I.S. Mulla, S.S. Suryavanshi, Cerium doped MgFe2O4 nanocomposites: highly sensitive and fast response-recoverable acetone gas sensor. Heliyon 5(6), e01489 (2019)

    Article  CAS  Google Scholar 

  21. A.H. Ashour, A.I. El-Batal, M.I.A.A. Maksoud, G.S. El-Sayyad, S. Labib, E. Abdeltwab, M.M. El-Okr, Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151 (2018)

    Article  CAS  Google Scholar 

  22. M.I.A.A. Maksoud, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.A. Elsayed, M. Gobara, A.M. El-Khawaga, E.K. Abdel-Khalek, M.M. El-Okr, Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb. Pathog. 127, 144–158 (2019)

    Article  CAS  Google Scholar 

  23. M.I.A. Abdel Maksoud, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.S. Abd-Elmonem, H.A.M. Hendawy, E.K. Abdel-Khalek, S. Labib, E. Abdeltwab, M.M. El-Okr, Synthesis and characterization of metals-substituted cobalt ferrite [Mx Co(1-x) Fe2O4; (M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples, Materials Science and Engineering: C 92 (2018) 644–656.

  24. M.I.A.A. Maksoud, A. El-ghandour, G.S. El-Sayyad, A.S. Awed, R.A. Fahim, M.M. Atta, A.H. Ashour, A.I. El-Batal, M. Gobara, E.K. Abdel-Khalek, M.M. El-Okr, Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. J. Mater. Sci.: Mater. Electron. 30(5), 4908–4919 (2019)

    CAS  Google Scholar 

  25. M.I.A. Abdel Maksoud, A. El-ghandour, G.S. El-Sayyad, A.S. Awed, A.H. Ashour, A.I. El-Batal, M. Gobara, E.K. Abdel-Khalek, M.M. El-Okr, Incorporation of Mn2+ into cobalt ferrite via sol–gel method: insights on induced changes in the structural, thermal, dielectric, and magnetic properties, Journal of Sol-Gel Science and Technology 90(3) (2019) 631–642.

  26. A.A. Reheem, A. Atta, M.A. Maksoud, Low energy ion beam induced changes in structural and thermal properties of polycarbonate. Radiat. Phys. Chem. 127, 269–275 (2016)

    Article  CAS  Google Scholar 

  27. P. Belavi, G. Chavan, L. Naik, R. Somashekar, R. Kotnala, Structural, electrical and magnetic properties of cadmium substituted nickel–copper ferrites. Mater. Chem. Phys. 132(1), 138–144 (2012)

    Article  CAS  Google Scholar 

  28. P.Y. Reyes-Rodríguez, D.A. Cortés-Hernández, J.C. Escobedo-Bocardo, J.M. Almanza-Robles, H.J. Sánchez-Fuentes, A. Jasso-Terán, L.E. De León-Prado, J. Méndez-Nonell, G.F. Hurtado-López, Structural and magnetic properties of Mg-Zn ferrites (Mg1−xZnxFe2O4) prepared by sol-gel method. J. Magn. Magn. Mater. 427, 268–271 (2017)

    Article  CAS  Google Scholar 

  29. U. Ghodake, R.C. Kambale, S. Suryavanshi, Effect of Mn2+ substitution on structural, electrical transport and dielectric properties of Mg-Zn ferrites. Ceram. Int. 43(1), 1129–1134 (2017)

    Article  CAS  Google Scholar 

  30. L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louer, P. Scardi, Rietveld refinement guidelines. J. Appl. Crystallogr. 32(1), 36–50 (1999)

    Article  CAS  Google Scholar 

  31. Y. Gao, Z. Wang, J. Pei, H. Zhang, Structural, elastic, thermal and soft magnetic properties of Ni-Zn-Li ferrites. J. Alloy. Compd. 774, 1233–1242 (2019)

    Article  CAS  Google Scholar 

  32. P. Yang, Z. Liu, H. Qi, Z. Peng, X. Fu, High-performance inductive couplers based on novel Ce3+ and Co2+ ions co-doped Ni-Zn ferrites. Ceram. Int. 45(11), 13685–13691 (2019)

    Article  CAS  Google Scholar 

  33. V. Mote, Y. Purushotham, B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6(1), 6 (2012)

    Article  Google Scholar 

  34. M. Amer, T. Meaz, A. Hashhash, S. Attalah, A. Ghoneim, Structural properties and magnetic interactions in Sr-doped Mg–Mn nanoparticle ferrites. Mater. Chem. Phys. 162, 442–451 (2015)

    Article  CAS  Google Scholar 

  35. C. Murugesan, G. Chandrasekaran, Impact of Gd 3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5(90), 73714–73725 (2015)

    Article  CAS  Google Scholar 

  36. W. Hu, N. Qin, G. Wu, Y. Lin, S. Li, D. Bao, Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances. J. Am. Chem. Soc. 134(36), 14658–14661 (2012)

    Article  CAS  Google Scholar 

  37. M.H. Mahmoud, M.I. Abd-Elrahman, Infrared investigations of Cu-Zn ferrite substituted with rare earth ions. Mater. Lett. 73, 226–228 (2012)

    Article  CAS  Google Scholar 

  38. H.M.I. Abdallah, T. Moyo, J.Z. Msomi, Magnetic properties of nanosized Mg0.5Mn0.5(RE)0.1Fe1.9O4 ferrites synthesized by glycol–thermal method, Journal of Magnetism and Magnetic Materials 332 (2013) 123–129.

  39. M. Kamran, M. Anis-ur-Rehman, Enhanced transport properties in Ce doped cobalt ferrites nanoparticles for resistive RAM applications. J. Alloy. Compd. 822, 153583 (2020)

    Article  CAS  Google Scholar 

  40. R.S. Yadav, J. Havlica, J. Masilko, L. Kalina, J. Wasserbauer, M. Hajdúchová, V. Enev, I. Kuřitka, Z. Kožáková, Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties. J. Magn. Magn. Mater. 399, 109–117 (2016)

    Article  CAS  Google Scholar 

  41. M.K. Abbas, M.A. Khan, F. Mushtaq, M.F. Warsi, M. Sher, I. Shakir, M.F.A. Aboud, Impact of Dy on structural, dielectric and magnetic properties of Li-Tb-nanoferrites synthesized by micro-emulsion method. Ceram. Int. 43(7), 5524–5533 (2017)

    Article  CAS  Google Scholar 

  42. S. Bahhar, H. Lemziouka, A. Boutahar, H. Bioud, H. Lassri, E. Hlil, Influence of La3+ site substitution on the structural, magnetic and magnetocaloric properties of ZnFe2− xLaxO4 (x= 0.00, 0.001, 0.005 and 0.01) spinel zinc ferrites, Chemical Physics Letters 716 (2019) 186–191.

  43. S. Kakade, R. Kambale, C. Ramanna, Y. Kolekar, Crystal strain, chemical bonding, magnetic and magnetostrictive properties of erbium (Er 3+) ion substituted cobalt-rich ferrite (Co 1.1 Fe 1.9− x Er x O 4), RSC Advances 6(40) (2016) 33308–33317.

  44. A. Ashour, A.I. El-Batal, M.A. Maksoud, G.S. El-Sayyad, S. Labib, E. Abdeltwab, M. El-Okr, Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique, Particuology (2018).

  45. J.S. Kounsalye, A.V. Humbe, A.R. Chavan, K. Jadhav, Rietveld, cation distribution and elastic investigations of nanocrystalline Li0. 5+ 0.5 xZrxFe2. 5–1.5 xO4 synthesized via sol-gel route, Physica B: Condensed Matter 547 (2018) 64–71.

  46. M.A. Maksoud, A. El-ghandour, G.S. El-Sayyad, A. Awed, R.A. Fahim, M. Atta, A. Ashour, A.I. El-Batal, M. Gobara, E. Abdel-Khalek, Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications, Journal of Materials Science: Materials in Electronics (2019) 1–12.

  47. S. Chakrabarty, A. Dutta, M. Pal, Effect of yttrium doping on structure, magnetic and electrical properties of nanocrystalline cobalt ferrite. J. Magn. Magn. Mater. 461, 69–75 (2018)

    Article  CAS  Google Scholar 

  48. E.R. Kumar, P.S.P. Reddy, G.S. Devi, S. Sathiyaraj, Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M= Zn, Cu, Ni, and Co) ferrite nanoparticles. J. Magn. Magn. Mater. 398, 281–288 (2016)

    Article  CAS  Google Scholar 

  49. M.T. Rahman, M. Vargas, C. Ramana, Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloy. Compd. 617, 547–562 (2014)

    Article  CAS  Google Scholar 

  50. M.I.A. Abdel Maksoud, G.S. El-Sayyad, A. Abokhadra, L.I. Soliman, H.H. El-Bahnasawy, A.H. Ashour: Influence of Mg2+ substitution on structural, optical, magnetic, and antimicrobial properties of Mn–Zn ferrite nanoparticles. J. Mater. Sci. 31(3): 2598–2616 (2020).

  51. A.B. Mugutkar, S.K. Gore, U.B. Tumberphale, V.V. Jadhav, R.S. Mane, S.M. Patange, S.E. Shirsath, S.S. Jadhav, Role of composition and grain size in controlling the structure sensitive magnetic properties of Sm3+ substituted nanocrystalline Co-Zn ferrites. J. Rare Earths 38(10), 1069–1075 (2020)

    Article  CAS  Google Scholar 

  52. K. Zipare, S. Bandgar, G. Shahane, Effect of Dy-substitution on structural and magnetic properties of MnZn ferrite nanoparticles. J. Rare Earths 36(1), 86–94 (2018)

    Article  CAS  Google Scholar 

  53. T. Dippong, I.G. Deac, O. Cadar, E.A. Levei, L. Diamandescu, G. Borodi, Effect of Zn content on structural, morphological and magnetic behavior of ZnxCo1-xFe2O4/SiO2 nanocomposites. J. Alloys Compd. (2019).

  54. M.I.A. Abdel Maksoud, A. El-Ghandour, G.S. El-Sayyad, R.A. Fahim, A.H. El-Hanbaly, M. Bekhit, E.K. Abdel-Khalek, H.H. El-Bahnasawy, M. Abd Elkodous, A.H. Ashour, A.S. Awed, Unveiling the effect of Zn2+ substitution in enrichment of structural, magnetic, and dielectric properties of cobalt ferrite. J. Inorg. Organometallic Polym. Mater. 30(9): 3709–3721 (2020)

  55. T. Tatarchuk, N. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J. Alloy. Compd. 731, 1256–1266 (2018)

    Article  CAS  Google Scholar 

  56. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15(2), 627–637 (1966)

    Article  CAS  Google Scholar 

  57. P. Monisha, P. Priyadharshini, S. Gomathi, K. Pushpanathan, Ferro to superparamagnetic transition: Outcome of Ni doping in polyethylene glycol capped CoFe2O4 nanoparticles. J. Alloys Compd. 157447 (2020).

  58. N. Ghazi, H. Mahmoudi Chenari, F.E. Ghodsi, Rietveld refinement, morphology analysis, optical and magnetic properties of magnesium-zinc ferrite nanofibers. J. Magn. Magn. Mater. 468, 132–140 (2018)

    Article  CAS  Google Scholar 

  59. A. Ashok, L.J. Kennedy, J.J. Vijaya, Structural, optical and magnetic properties of Zn1-xMnxFe2O4 (0≤x≤0.5) spinel nano particles for transesterification of used cooking oil, Journal of Alloys and Compounds 780 (2019) 816–828.

  60. M. Deepty, C. Srinivas, E.R. Kumar, N.K. Mohan, C.L. Prajapat, T.V.C. Rao, S.S. Meena, A.K. Verma, D.L. Sastry, XRD, EDX, FTIR and ESR spectroscopic studies of co-precipitated Mn–substituted Zn–ferrite nanoparticles. Ceram. Int. 45(6), 8037–8044 (2019)

    Article  CAS  Google Scholar 

  61. S. Thota, S.C. Kashyap, S.K. Sharma, V.R. Reddy, Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: role of Mn. J. Phys. Chem. Solids 91, 136–144 (2016)

    Article  CAS  Google Scholar 

  62. C.-Y. Tsay, Y.-C. Chiu, Y.-K. Tseng, Investigation on structural, magnetic, and FMR properties for hydrothermally-synthesized magnesium-zinc ferrite nanoparticles. Physica B 570, 29–34 (2019)

    Article  CAS  Google Scholar 

  63. V.J. Angadi, L. Choudhury, K. Sadhana, H.-L. Liu, R. Sandhya, S. Matteppanavar, B. Rudraswamy, V. Pattar, R.V. Anavekar, K. Praveena, Structural, electrical and magnetic properties of Sc3+ doped Mn-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 424, 1–11 (2017)

    Article  CAS  Google Scholar 

  64. L. Gama, E.P. Hernandez, D.R. Cornejo, A.A. Costa, S.M. Rezende, R.H.G.A. Kiminami, A.C.F.M. Costa, Magnetic and structural properties of nanosize Ni–Zn–Cr ferrite particles synthesized by combustion reaction. J. Magn. Magn. Mater. 317(1), 29–33 (2007)

    Article  CAS  Google Scholar 

  65. Z. Yan, J. Luo, Effects of CeZn co-substitution on structure, magnetic and microwave absorption properties of nickel ferrite nanoparticles. J. Alloy. Compd. 695, 1185–1195 (2017)

    Article  CAS  Google Scholar 

  66. M. Hashim, A. Ahmed, S.A. Ali, S.E. Shirsath, M.M. Ismail, R. Kumar, S. Kumar, S.S. Meena, D. Ravinder, Structural, optical, elastic and magnetic properties of Ce and Dy doped cobalt ferrites. J. Alloy. Compd. 834, 155089 (2020)

    Article  CAS  Google Scholar 

  67. G. Kumar, J. Shah, R.K. Kotnala, P. Dhiman, R. Rani, V.P. Singh, G. Garg, S.E. Shirsath, K.M. Batoo, M. Singh, Self-ignited synthesis of Mg–Gd–Mn nanoferrites and impact of cation distribution on the dielectric properties, Ceramics International 40(9, Part A) (2014) 14509–14516.

  68. R. Sharma, P. Thakur, M. Kumar, N. Thakur, N. Negi, P. Sharma, V. Sharma, Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J. Alloy. Compd. 684, 569–581 (2016)

    Article  CAS  Google Scholar 

  69. R. Sharma, P. Thakur, M. Kumar, P.B. Barman, P. Sharma, V. Sharma, Enhancement in A-B super-exchange interaction with Mn2+ substitution in Mg-Zn ferrites as a heating source in hyperthermia applications. Ceram. Int. 43(16), 13661–13669 (2017)

    Article  CAS  Google Scholar 

  70. A. Goldman, Modern Ferrite Technology (Springer Science & Business Media, New York, 2006).

    Google Scholar 

  71. K. Nadeem, S. Rahman, M. Mumtaz, Effect of annealing on properties of Mg doped Zn-ferrite nanoparticles. Progr. Nat. Sci. 25(2), 111–116 (2015)

    Article  CAS  Google Scholar 

  72. P. Tiwari, R. Verma, S.N. Kane, T. Tatarchuk, F. Mazaleyrat, Effect of Zn addition on structural, magnetic properties and anti-structural modeling of magnesium-nickel nano ferrites. Mater. Chem. Phys. 229, 78–86 (2019)

    Article  CAS  Google Scholar 

  73. L. Kumar, M. Kar, Effect of La3+ substitution on the structural and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite (CoFe2−xLaxO4). Ceram. Int. 38(6), 4771–4782 (2012)

    Article  CAS  Google Scholar 

  74. H. El moussaoui, O. Mounkachi, R. Masrour, M. Hamedoun, E.K. Hlil, A. Benyoussef, Synthesis and super-paramagnetic properties of neodymium ferrites nanorods. J. Alloys Compd. 581: 776–781 (2013).

  75. M.N. Akhtar, M.A. Khan, M. Ahmad, M. Nazir, M. Imran, A. Ali, A. Sattar, G. Murtaza, Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0. 5− xNi0. 5Fe2O4) nanocrystalline ferrites for core, switching and MLCI’s applications, Journal of Magnetism and Magnetic Materials 421 (2017) 260–268.

  76. A.V. Humbe, A.C. Nawle, A. Shinde, K. Jadhav, Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni-Zn spinel ferrite synthesized by nitrate-citrate route. J. Alloy. Compd. 691, 343–354 (2017)

    Article  CAS  Google Scholar 

  77. S.E. Shirsath, M.L. Mane, Y. Yasukawa, X. Liu, A. Morisako, Self-ignited high temperature synthesis and enhanced super-exchange interactions of Ho 3+–Mn 2+–Fe 3+–O 2− ferromagnetic nanoparticles. Phys. Chem. Chem. Phys. 16(6), 2347–2357 (2014)

    Article  CAS  Google Scholar 

  78. S. Ikram, J. Jacob, K. Mahmood, A. Ali, N. Amin, U. Rehman, M.I. Arshad, M. Ajaz un Nabi, K. Javid, A. Ashfaq, M. Sharif, S. Hussain, Influence of Ce3+ substitution on the structural, electrical and magnetic properties of Zn0.5Mn0.43Cd0.07Fe2O4 spinel ferrites, Physica B: Condensed Matter 580 (2020) 411764.

  79. X. Xie, C. Ni, Z. Lin, D. Wu, X. Sun, Y. Zhang, B. Wang, W. Du, Phase and morphology evolution of high dielectric CoO/Co3O4 particles with Co3O4 nanoneedles on surface for excellent microwave absorption application. Chem. Eng. J. 396, 125205 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia, for funding this work through Research Groups Program under Grant Number R.G.P.1/168/41.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. A. Abdel Maksoud.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshahrani, B., ElSaeedy, H.I., fares, S. et al. The effect of Ce3+ doping on structural, optical, ferromagnetic resonance, and magnetic properties of ZnFe2O4 nanoparticles. J Mater Sci: Mater Electron 32, 780–797 (2021). https://doi.org/10.1007/s10854-020-04856-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04856-9

Navigation