Skip to main content
Log in

The enhanced multiferroic properties of BiFeO3 composite film by doping ions in the magnetic layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi0.88Gd0.09Sr0.03Fe0.94Mn0.04Co0.02O3/Co1−xNixFe2O4 (BGSFMC/CNxFO, x = 0.1–0.5) composite films were successfully prepared by the sol–gel method. The structure and performance changes of BGSFMC/CNxFO composite film were studied. The results show that after the Ni2+-doped CNxFO magnetic bottom layer is combined with the upper BGSFMC, stress is generated in the film interface, which makes the upper BGSFMC layer phase structure change from a single R3c:H phase to the coexistence of R3c:H and R3m:R phases. The change of the structure causes the Fe–O bond length and Fe–O–Fe bond angle of the upper layer of the BGSFMC to change, the internal oxygen vacancy concentration decreases and the Fe3+ concentration increases. As a result, the inclination of the upper BGSFMC layer octahedron changes, limiting spatial modulation and releasing magnetism. At the same time, the change of structure also inhibits the conversion of Fe3+ to Fe2+ and strengthens the spin tilt and Fe–O–Fe super exchange interaction to enhance ferromagnetism. The ferromagnetic properties of the BGSFMC/CNxFO composite film are significantly enhanced, and the residual magnetization of 48.29–56.94 emu/cm3 is obtained. The reduction of defect complexes makes the ferroelectric domains of the BGSFMC/CNxFO composite film easier to flip under an external electric field, the symmetry and peak sharpness of the CV characteristic curve increase, and the intrinsic polarization increases. The BGSFMC/CN0.1FO composite film obtained an increased Pr = 112 μC/cm2, a polarization switching current Is = 0.081 mA, a ferroelectric domain switching capacitance peak CS = 24.9 μF/cm2, and a reduced leakage conductivity CL = 4.73 μF/cm2. Through the ion doping of the magnetic layer, the ferromagnetic and ferroelectric properties of the BFO film can be adjusted and improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Tokura, S. Seki, N. Nagaosa, Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014)

    Article  Google Scholar 

  2. J. Ma, J. Hu, Z. Li, C.W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23, 1062–1087 (2011)

    Article  CAS  Google Scholar 

  3. K. Chakrabarti, K. Das, B. Sarkar, S. Ghosh, S.K. De, G. Sinha, J. Lahtinen, Enhanced magnetic and dielectric properties of Eu and Co co-doped BiFeO3 nanoparticles. Appl. Phys. Lett. 101, 1–6 (2012)

    Article  Google Scholar 

  4. D. Lin, Q. Zheng, Y. Li, Y. Wan, Q. Li, W. Zhou, Microstructure, ferroelectric and piezoelectric properties of Bi0.5K0.5TiO3-modified BiFeO3–BaTiO3 lead-free ceramics with high Curie temperature. J. Eur. Ceram. Soc. 33, 3023–3036 (2013)

    Article  CAS  Google Scholar 

  5. J. Seidel, L.W. Martin, Q. He, Q. Zhan, Y.H. Chu, A. Rother, M.E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S.V. Kalinin, S. Gemming, F. Wang, G. Catalan, J.F. Scott, N.A. Spaldin, J. Orenstein, R. Ramesh, Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009)

    Article  CAS  Google Scholar 

  6. F. Zavaliche, S.Y. Yang, T. Zhao, Y.H. Chu, M.P. Cruz, C.B. Eom, R. Ramesh, Multiferroic BiFeO3 films: domain structure and polarization dynamics. Phase Transit. 79, 991–1017 (2006)

    Article  CAS  Google Scholar 

  7. I. Sosnowska, T.P. Neumaier, E. Steichele, Spiral magnetic ordering in bismuth ferrite. J. Phys. C Solid State Phys. 15, 4835–4846 (1982)

    Article  CAS  Google Scholar 

  8. Y. Ahn, J.Y. Son, Multiferroic properties and ferroelectric domain structures of Yb-doped BiFeO3 thin films on glass substrates. Physica B Condens. Matter. 558, 24–27 (2019)

    Article  CAS  Google Scholar 

  9. K.S. Kumar, S. Ramu, A. Sudharani, M. Ramanadha, G. Murali, R.P. Vijayalakshmi, Enhanced magnetic and dielectric properties of Gd doped BiFeO3: Er nanoparticles synthesized by sol–gel technique. Physica E Low Dimens. Syst. Nanostruct. 115, 113689 (2020)

    Article  CAS  Google Scholar 

  10. W. Mao, Q. Yao, Y. Fan, Y. Wang, X. Wang, Y. Pu, X. Li, Combined experimental and theoretical investigation on modulation of multiferroic properties in BiFeO3 ceramics induced by Dy and transition metals co-doping. J. Alloys Compd. 784, 117–124 (2019)

    Article  CAS  Google Scholar 

  11. Y. Liu, G. Tan, M. Guo, Z. Chai, L. Lv, M. Xue, X. Ren, J. Li, H. Ren, A. Xia, Multiferroic properties of La/Er/Mn/Co multi-doped BiFeO3 thin films. Ceram. Int. 45, 11765–11775 (2019)

    Article  CAS  Google Scholar 

  12. Z. Chai, G. Tan, Z. Yue, W. Yang, M. Guo, H. Ren, A. Xia, M. Xue, Y. Liu, L. Lv, Y. Liu, Ferroelectric properties of BiFeO3 thin films by Sr/Gd/Mn/Co multi-doping. J. Alloys Compd. 746, 677–687 (2018)

    Article  CAS  Google Scholar 

  13. N. Hamdaoui, Y. Azizian-Kalandaragh, M. Khlifi, L. Beji, Structural, magnetic and dielectric properties of Ni0.6Mg0.4Fe2O4 ferromagnetic ferrite prepared by sol gel method. Ceram. Int. 45, 16458–16465 (2019)

    Article  CAS  Google Scholar 

  14. S. Yonatan Mulushoa, N. Murali, M. Tulu Wegayehu, V. Veeraiah, K. Samatha, Investigation of structural, DC-resistivity and magnetic properties of Mg ferrite. Mater. Today Proc. 5, 26460–26468 (2018)

    Article  CAS  Google Scholar 

  15. H.L. Mo, D.M. Jiang, C.M. Wang, W.G. Zhang, J. Sen Jiang, Magnetic, dielectric and magnetoelectric properties of CoFe2O4–Bi0.85La0.15FeO3 multiferroic composites. J. Alloys Compd. 579, 187–191 (2013)

    Article  CAS  Google Scholar 

  16. M. Guo, G. Tan, Y. Zheng, W. Liu, H. Ren, A. Xia, Interfacial characteristics and multiferroic properties of ion-doped BiFeO3/NiFe2O4 thin films. J. Appl. Phys. 121, 104409–1831 (2017)

    Google Scholar 

  17. G. Tan, Z. Chai, Y. Zheng, Z. Yue, W. Yang, M. Guo, H. Ren, A. Xia, L. Lv, Y. Liu, Tunable structural transition and multiferroic properties of the composite thin films through the structural transition of magnetic layer. J. Eur. Ceram. Soc. 38, 4463–4475 (2018)

    Article  CAS  Google Scholar 

  18. Z. Chai, G. Tan, Z. Yue, M. Xue, Y. Liu, L. Lv, H. Ren, A. Xia, Structural transition, defect complexes and improved ferroelectric behaviors of Bi0.88Sr0.03Gd0.09Fe0.94Mn0.04Co0.02O3/Co1-xMnxFe2O4 bilayer thin films. Ceram. Int. 44, 15770–15777 (2018)

    Article  CAS  Google Scholar 

  19. K. Omri, I. Najeh, L. El Mir, Influence of annealing temperature on the microstructure and dielectric properties of ZnO nanoparticles. Ceram. Int. 42, 8940 (2016)

    Article  CAS  Google Scholar 

  20. K. Omri, A. Bettaibi, K. Khirouni, L. El Mir, The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles. Physica B Condens. Matter 537, 167 (2018)

    Article  CAS  Google Scholar 

  21. K. Omri, A. Alyamani, L. El Mir, Surface morphology, microstructure and electrical properties of Ca-doped ZnO thin flms. J. Mater. Sci. Mater. Electron. 30, 16606 (2019)

    Article  CAS  Google Scholar 

  22. D. Kothari, V. Raghavendra Reddy, V.G. Sathe, A. Gupta, A. Banerjee, A.M. Awasthi, Raman scattering study of polycrystalline magnetoelectric BiFeO3. J. Magn. Magn. Mater. 320, 548–552 (2008)

    Article  CAS  Google Scholar 

  23. R.S. Yadav, J. Havlica, M. Hnatko, P. Šajgalík, C. Alexander, M. Palou, E. Bartoníčková, M. Boháč, F. Frajkorová, J. Masilko, M. Zmrzlý, L. Kalina, M. Hajdúchová, V. Enev, Magnetic properties of Co1-xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling. J. Magn. Magn. Mater. 378, 190–199 (2015)

    Article  CAS  Google Scholar 

  24. G.L. Yuan, S.W. Or, H.L.W. Chan, Raman scattering spectra and ferroelectric properties of Bi1-xNdxFeO3 (x= 0–0.2) multiferroic ceramics. J. Appl. Phys. 101, 0–5 (2007)

    Google Scholar 

  25. Y. Zheng, G. Tan, A. Xia, H. Ren, Structure and multiferroic properties of multi-doped Bi1-xErxFe0.96Mn0.02Co0.02O3 thin films. J. Alloys Compd. 684, 438–444 (2016)

    Article  CAS  Google Scholar 

  26. F. Aziz, P. Pandey, M. Chandra, A. Khare, D.S. Rana, K.R. Mavani, Surface morphology, ferromagnetic domains and magnetic anisotropy in BaFeO3-δ thin films: correlated structure and magnetism. J. Magn. Magn. Mater. 356, 98–102 (2014)

    Article  CAS  Google Scholar 

  27. M.M. Shirolkar, C. Hao, X. Dong, T. Guo, L. Zhang, M. Li, H. Wang, Tunable multiferroic and bistable/complementary resistive switching properties of dilutely Li-doped BiFeO3 nanoparticles: an effect of aliovalent substitution. Nanoscale 6, 4735–4744 (2014)

    Article  CAS  Google Scholar 

  28. B. Ahmmad, M.Z. Islam, A. Billah, M.A. Basith, Anomalous coercivity enhancement with temperature and tunable exchange bias in Gd and Ti co-doped BiFeO3 multiferroics. J. Phys. D Appl. Phys. 49, 95001 (2016)

    Article  Google Scholar 

  29. C. Ederer, C.J. Fennie, Electric-field switchable magnetization via the Dzyaloshinskii–Moriya interaction: FeTiO3 versus BiFeO3. J. Phys. Condens. Matter. 20, 434219 (2008)

    Article  Google Scholar 

  30. Y. Zhang, Y. Wang, J. Qi, Y. Tian, M. Sun, J. Zhang, T. Hu, M. Wei, Y. Liu, J. Yang, Enhanced magnetic properties of BiFeO3 thin films by doping: analysis of structure and morphology. Nanomaterials 8, 1–13 (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Shaanxi Province Key Research and Development Plan (2018GY-107), the Project of the National Natural Science Foundation of China (51372145), Natural Science Basic Research Plan in Shaanxi Province of China (2020JQ-730), and the Graduate Innovation Fund of Shaanxi University of Science & Technology (SUST-A04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jincheng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 167 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Tan, G., Ren, X. et al. The enhanced multiferroic properties of BiFeO3 composite film by doping ions in the magnetic layer. J Mater Sci: Mater Electron 32, 4639–4650 (2021). https://doi.org/10.1007/s10854-020-05203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05203-8

Navigation