Skip to main content
Log in

Study of the formation effect of the cubic phase of LiTiO2 on the structural, optical, and mechanical properties of LixTixO3 ceramics with different contents of the X component

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The paper presents the results of the study of structural, morphological, optical, and mechanical properties of lithium-containing ceramics obtained using the method of mechanochemical solid-phase synthesis. The purpose of this work is to assess the possibility of obtaining lithium-containing ceramics of the two-phase type, as well as the formation effect of the cubic phase of LiTiO2 on changes in the properties of ceramics. The relevance of this study is to obtain new data on the properties of lithium-containing ceramics, which have great prospects in their use as blanket materials for tritium reproduction. During the study, it was found that the formation of the LiTiO2 cubic phase leads to a change in the morphological features of ceramics, with the formation of sphere-like agglomerates of a nanoscale scale. An increase in the contribution of the LiTiO2 phase leads to a shift of the fundamental absorption edge, as well as the appearance of additional absorption bands. During mechanical tests for the determination of resistance to destruction by single compression, it was found that an increase in ceramic density, which is due to an increase in the contribution of the cubic phase, leads to an increase in resistance by 70–85%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Rais et al., Copper substitution effect on the structural properties of nickel ferrites. Ceram. Int. 40(9), 14413–14419 (2014)

    Article  CAS  Google Scholar 

  2. M.A. Fakhri et al., Optical investigations of photonics lithium niobate. Sol. Energy 120, 381–388 (2015)

    Article  CAS  Google Scholar 

  3. M.A. Almessiere et al., Impact of Eu3+ ion substitution on structural, magnetic and microwave traits of Ni–Cu–Zn spinel ferrites. Ceram. Int. 46(8), 11124–11131 (2020)

    Article  CAS  Google Scholar 

  4. M.V. Zdorovets, A.L. Kozlovskiy, The effect of lithium doping on the ferroelectric properties of LST ceramics. Ceram. Int. 46(10), 14548–14557 (2020)

    Article  CAS  Google Scholar 

  5. Y. Al-Douri et al., First-principles calculations to investigate the refractive index and optical dielectric. Phys. Status Solidi (b) 256(11), 1900131 (2019)

    Article  CAS  Google Scholar 

  6. D. Prakash et al., Synthesis, purification and microstructural characterization of nickel doped carbon nanotubes for spintronic applications. Ceram. Int. 42(5), 5600–5606 (2016)

    Article  CAS  Google Scholar 

  7. I.Z. Zhumatayeva et al., The study of the prospects for the use of Li0.15Sr0.85TiO3 ceramics. J. Mater. Sci. Mater. Electron. 1(9), 6764–6772 (2020)

    Article  CAS  Google Scholar 

  8. D.S. Klygach et al., Electromagnetic properties of BaFe12O19: Ti at centimeter wavelengths. J. Alloys Compd. 755, 177–183 (2018)

    Article  CAS  Google Scholar 

  9. M.A. Fakhri, Y. Al-Douri, U. Hashim, Fabricated optical strip waveguide of nanophotonics lithium niobate. IEEE Photonics J. 8(2), 1–10 (2016)

    Article  CAS  Google Scholar 

  10. M.A. Almessiere et al., Correlation between microstructure parameters and anti-cancer activity of the [Mn0.5Zn0.5](EuxNdxFe2-2x)O4 nanoferrites produced by modified sol-gel and ultrasonic methods. Ceram. Int. 46(6), 7346–7354 (2020)

    Article  CAS  Google Scholar 

  11. Y. Al-Douri, M.A.M. Al Saadi, First-principle calculations to investigate electronic and optical properties of MgO monolayer. Mater. Express 9(2), 166–172 (2019)

    Article  CAS  Google Scholar 

  12. S. Hadji et al., Elastic, electronic, optical and thermodynamic properties of Ba3Ca2Si2N6 semiconductor: first-principles predictions. Physica B Condens, Matter 589, 412213 (2020)

    Article  CAS  Google Scholar 

  13. D.I. Shlimas, M.V. Zdorovets, A.L. Kozlovskiy, Synthesis and resistance to helium swelling of Li2TiO3 ceramics. J. Mater. Sci. Mater. Electron. 31(15), 12903–12912 (2020)

    Article  CAS  Google Scholar 

  14. M. Bouchenafa et al., Theoretical investigation of the structural, elastic, electronic, and optical properties of the ternary tetragonal tellurides KBTe2 (B= Al, In). Mater. Sci. Semicond. Process. 114, 105085 (2020)

    Article  CAS  Google Scholar 

  15. Y. Yang et al., Influence of Nd-NbZn co-substitution on structural, spectral and magnetic properties of M-type calcium-strontium hexaferrites Ca0.4Sr0.6-xNdxFe12.0-x (Nb0.5Zn0.5)xO19. J. Alloys Compd. 765, 616–623 (2018)

    Article  CAS  Google Scholar 

  16. V.A. Ketsko et al., Specifics of pyrohydrolytic and solid-phase syntheses of solid solutions in the (MgGa2O4)x (MgFe2O4)1–x system. Russ. J. Inorg. Chem. 55(3), 427–429 (2010)

    Article  CAS  Google Scholar 

  17. R. Al-Gaashani et al., XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 39(3), 2283–2292 (2013)

    Article  CAS  Google Scholar 

  18. M.A. Benali et al., Synthesis and analysis of SnO2/ZnO nanocomposites: structural studies and optical investigations with Maxwell-Garnett model. Mater. Chem. Phys. 240, 122254 (2020)

    Article  CAS  Google Scholar 

  19. M.A. Fakhri et al., Optical investigation of nanophotonic lithium niobate-based optical waveguide. Appl. Phys. B 121(1), 107–116 (2015)

    Article  CAS  Google Scholar 

  20. S. Touam et al., "First-principles computations of Y xGa 1–x As-ternary alloys: a study on structural, electronic, optical and elastic properties. Bull. Mater. Sci. 43, 22–32 (2020)

    Article  CAS  Google Scholar 

  21. R. Ramaraghavulu, S. Buddhudu, G. Bhaskar Kumar, Analysis of structural and thermal properties of Li2TiO3 ceramic powders. Ceram. Int. 37(4), 1245–1249 (2011)

    Article  CAS  Google Scholar 

  22. H. Wang et al., Fabrication of nanostructured Li2TiO3 ceramic pebbles as tritium breeders using powder particles synthesised via a CTAB-assisted method. Ceram. Int. 43(7), 5680–5686 (2017)

    Article  CAS  Google Scholar 

  23. M. Yang et al., Comparison of the microwave and conventional sintering of Li2TiO3 ceramic pebbles. Ceram. Int. 44(16), 19672–19677 (2018)

    Article  CAS  Google Scholar 

  24. C.-H. Jung, Sintering characterization of Li2TiO3 ceramic breeder powders prepared by the solution combustion synthesis process. J. Nucl. Mater. 341(2–3), 148–152 (2005)

    Article  CAS  Google Scholar 

  25. W. Liu, R. Zuo, A novel Li2TiO3–Li2CeO3 ceramic composite with excellent microwave dielectric properties for low-temperature confirmed ceramic applications. J. Eur. Ceram. Soc. 38(1), 119–123 (2018)

    Article  CAS  Google Scholar 

  26. C.-L. Huang, Y.-W. Tseng, J.-Y. Chen, High-Q dielectrics using ZnO-modified Li2TiO3 ceramics for microwave applications. J. Eur. Ceram. Soc. 32(12), 3287–3295 (2012)

    Article  CAS  Google Scholar 

  27. M. Du et al., High-Q microwave ceramics of Li2TiO3 co-doped with magnesium and niobium. J. Am. Ceram. Soc. 101(9), 4066–4075 (2018)

    Article  CAS  Google Scholar 

  28. Y. Li et al., Synthesis of Li2TiO3 ceramic breeder powders by in-situ hydrolysis and its characterization. Mater. Lett. 89, 25–27 (2012)

    Article  CAS  Google Scholar 

  29. C.-H. Jung et al., A polymer solution technique for the synthesis of nano-sized Li2TiO3 ceramic breeder powders. J. Nucl. Mater. 373(1–3), 194–198 (2008)

    Article  CAS  Google Scholar 

  30. Y. Wu et al., Temperature stable microwave dielectric ceramic 0.3Li2TiO3–0.7Li (Zn0.5Ti1.5)O4 with ultra-low dielectric loss. Mater. Lett. 65(17–18), 2680–2682 (2011)

    Article  CAS  Google Scholar 

  31. C. Dang et al., A promising tritium breeding material: Nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles. J. Nucl. Mater. 500, 265–269 (2018)

    Article  CAS  Google Scholar 

  32. M. Xiang et al., Preparation of Li2TiO3-Li4SiO4 core-shell ceramic pebbles with enhanced crush load by graphite bed process. J. Nucl. Mater. 466, 477–483 (2015)

    Article  CAS  Google Scholar 

  33. T. Hoshino et al., Pebble fabrication and tritium release properties of an advanced tritium breeder. Fusion Eng. Des. 109, 1114–1118 (2016)

    Article  CAS  Google Scholar 

  34. H. Wedemeyer, H. Werle, E. Günther, Influence of grain-size and carbonate impurities on the tritium release from lithium orthosilicate. J. Nucl. Mater. 191, 240–242 (1992)

    Article  Google Scholar 

  35. R.A. Andrievski, Thermal and radiation stability of nanomaterials. MRS Online Proc. Library Arch. 1645, 357–369 (2014)

    Google Scholar 

  36. Q. Zhou et al., Preparation of Li2TiO3 ceramic with nano-sized pores by ultrasonic-assisted solution combustion. J. Eur. Ceram. Soc. 37(11), 3595–3602 (2017)

    Article  CAS  Google Scholar 

  37. J.-L. Ma et al., Microwave dielectric properties of low-fired Li2TiO3–MgO ceramics for LTCC applications. Mater. Sci. Eng., B 204, 15–19 (2016)

    Article  CAS  Google Scholar 

  38. C.-L. Yu et al., Monoclinic Li2TiO3 nano-particles via hydrothermal reaction: processing and structure. Ceram. Int. 40(1), 1901–1908 (2014)

    Article  CAS  Google Scholar 

  39. M. Yang et al., Fabrication of Li2TiO3 ceramic pebbles with fine microstructure by microwave sintering. J. Nucl. Mater. 509, 330–334 (2018)

    Article  CAS  Google Scholar 

  40. U. Dash et al., Electrical properties of bulk and nano Li2TiO3 ceramics: a comparative study. J. Adv. Ceram. 3(2), 89–97 (2014)

    Article  CAS  Google Scholar 

  41. G.J. Rao et al., Fabrication and characterization of Li4SiO4-Li2TiO3 composite ceramic pebbles using extrusion and spherodization technique. J. Eur. Ceram. Soc. 38(15), 5174–5183 (2018)

    Article  CAS  Google Scholar 

  42. Q. Zhou et al., Release kinetics of tritium generation in neutron irradiated biphasic Li2TiO3–Li4SiO4 ceramic breeder. J. Nucl. Mater. 522, 286–293 (2019)

    Article  CAS  Google Scholar 

  43. F.Z. Krimech et al., Monoclinic Li2TiO3 nano-particles via sol–gel method: structure and impedance spectroscopy. Mediterr. J. Chem. 8(3), 209–212 (2019)

    Article  CAS  Google Scholar 

  44. M. Yang et al., Fabrication and tritium release property of Li2TiO3-Li4SiO4 biphasic ceramics. J. Nucl. Mater. 503, 151–156 (2018)

    Article  CAS  Google Scholar 

  45. Y. Lai et al., Temperature stability and high-Qf of low temperature firing Mg2SiO4–Li2TiO3 microwave dielectric ceramics. Ceram. Int. 43(18), 16167–16173 (2017)

    Article  CAS  Google Scholar 

  46. Y. Zeng et al., Fast fabrication of high quality Li2TiO3–Li4SiO4 biphasic ceramic pebbles by microwave sintering: In comparison with conventional sintering. Ceram. Int. 45(15), 19022–19026 (2019)

    Article  CAS  Google Scholar 

  47. M. Xiang et al., Preparation of Li2TiO3–Li4SiO4 core–shell ceramic pebbles with enhanced crush load by graphite bed process. J. Nucl. Mater. 466, 477–483 (2015)

    Article  CAS  Google Scholar 

  48. Q. Zhou et al., Effect of fuel-to-oxidizer ratios on combustion mode and microstructure of Li2TiO3 nanoscale powders. J. Eur. Ceram. Soc. 34(3), 801–807 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (No. AP08855734).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Kozlovskiy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlimas, D.I., Kozlovskiy, A.L. & Zdorovets, M.V. Study of the formation effect of the cubic phase of LiTiO2 on the structural, optical, and mechanical properties of LixTixO3 ceramics with different contents of the X component. J Mater Sci: Mater Electron 32, 7410–7422 (2021). https://doi.org/10.1007/s10854-021-05454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05454-z

Navigation