Skip to main content
Log in

Monte Carlo simulation study on TeO2–Bi2O–PbO–MgO–B2O3 glass for neutron-gamma 252Cf source

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present study aims to explore the neutron-gamma attenuation characteristics of the TeO2–Bi2O–PbO–MgO–B2O3 glasses based on MCNPX simulation and theoretical calculations. 252Cf neutron source is important as it emits both neutron and gamma and thus its shielding is essential. The glass samples were irradiated by the 252Cf neutron sources and the watt fission distribution was used to extract the neutron spectrum, then the obtained results were reported in the presence and absence of the glass sample. Also, the other attenuation parameters such as effective removal cross section, mass removal cross section, mean free path (MFP), half value thickness (HTV), and tenth value thickness (TVT) were demonstrated graphically against neutron. Using Doppler effect gamma spectrum in shielding materials for spontaneous fission 252Cf source was extracted and expressed. The linear attenuation coefficient (µ), MFP, HVT, and TVT for wide energy ranges of incident gamma rays were estimated. Furthermore, oxygen molar volume (OMV) and oxygen packing density (OPD) of the selected glasses by the use of molar volume values show a less tight packing of the glass network and a strong packing in the glass network versus MgO and PbO ratio, respectively. The acquired data represents that glass coded TePbMg5 has the higher fast neutron-gamma-shielding ability in comparison to the rest of the glass materials

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. R. Khabaz, R. Boodaghi, M.R. Benam, V. Zanganeh, Estimation of photoneutron dosimetric characteristics in organs/tissues using an improved simple model of linac head. Appl. Radiat. Isotopes 133, 88–94 (2018)

    CAS  Google Scholar 

  2. R. Boodaghi Malidarre, R. Khabaz, M.R. Benam, V. Zanganeh, Feasibility study to reduce the contamination of photoneutrons and photons in organs/tissues during radiotherapy. Iran. J. Med. Phys. 17, 366–373 (2019)

    Google Scholar 

  3. H. Miri-Hakimabad, H. Panjeh, A. Vejdani-Noghreiyan, Shielding studies on a total-body neutron activation facility. Iran. J. Radiat. Res. 5, 45–51 (2007)

    Google Scholar 

  4. I. Akkurt, Effective atomic and electron numbers of some steels at different energies. Ann. Nucl. En. 36, 1702–1705 (2009)

    CAS  Google Scholar 

  5. E.E. Altunsoy, H.O. Tekin, A. Mesbahi, I. Akkurt, MCNPX simulation for radiation dose absorption of anatomical regions and some organs. Acta Phys. Pol. A 137, 561–565 (2020)

    CAS  Google Scholar 

  6. I. Akkurt, H. Akyıldırım, B. Mavi, S. Kilincarslan, C. Basyigit, Photon attenuation coefficients of concrete includes barite in different rate. Ann. Nucl. Energy. 37, 910–914 (2010)

    CAS  Google Scholar 

  7. R. Boodaghi Malidarre, F. Kulali, A. Inal and A. Oz, Monte Carlo simulation of the waste soda-lime-silica glass system contained Sb2O3 for Gamma-ray shielding. Emerg. Mater. Res. 4, 1334-1340 (2020)

  8. İ Akkurt, S. Emıkönel, F. Akarslan, K. Günoğlu, Ş Kilinçarslan, İS. Üncü, Barite effect on radiation shielding properties of cotton-polyester fabric. Acta Phys. Pol. A 128B, 53–54 (2015)

    Google Scholar 

  9. I. Akkurt, Effective atomic and electron numbers of some steels at different energies. Ann. Nucl. En. 12, 1702–1705 (2009)

    Google Scholar 

  10. O. Günay, M. Sarihan, O. Yarar, İ Akkurt, M. Demir, Measurement of radiation dose in thyroid scintigraphy. Acta Phys. Pol. A 137, 569–573 (2020)

    Google Scholar 

  11. W. Gong, H. Yu, H. Ma, N. Wang, L. He, Study on the basic performance of basic magnesium sulfate cement concrete. Emerg. Mater. Res. 9, 618–627 (2020)

    Google Scholar 

  12. A.I. Elazaka, H.M.H. Zakaly, S.A.M. Issa, M. Rashad, H.O. Tekin, H.A. Saudi, V.H. Gillette, T.T. Erguzel, A.G. Mostafa, New approach to removal of hazardous Bypass Cement Dust (BCD) from the environment: 20Na2O-20BaCl2-(60–x)B2O3-(x)BCD glass system and optical, mechanical, structural and nuclear radiation shielding competences. J. Hazard. Mater. 403, 123738 (2021)

    CAS  Google Scholar 

  13. A.M.A. Mostafa, H.M.H. Zakaly, S.A. Al-Ghamdi, S.A.M. Issa, M. Al-Zaibani, R.M. Ramadan, E.F. El Agammy, PbO–Sb2O3–B2O3–CuO glassy system: evaluation of optical, gamma and neutron shielding properties. Mater. Chem. and Phys. 258, 123937 (2021)

    CAS  Google Scholar 

  14. I. Akkurt, C. Basyigit, S. Kilincarslan, B. Mavi, A. Akkurt, Radiation shielding of concretes containing different aggregates. Cem. Concr. Compos. 28, 153–157 (2006)

    CAS  Google Scholar 

  15. M. Rashad, H.A. Saudi, H.M.H. Zakaly, S.A.M. Issa, A.M. Abd-Elnaiem, Control optical characterizations of Ta+5–doped B2O3–Si2O–CaO–BaO glasses by irradiation dose. Opt. Mater. 112, 110613 (2021)

    CAS  Google Scholar 

  16. I. Akkurt, R. BoodaghiMalidarre, T. Kavas, Monte Carlo simulation of radiation shielding properties of the glass system containing Bi2O3. Eur. Phys. J. Plus (2021). https://doi.org/10.1140/epjp/s13360-021-01260-y

    Article  Google Scholar 

  17. K. Kirdsiri, J. Kaewkhao, N. Chanthima, P. Limsuwan, Comparative study of silicate glasses containing Bi2O3, PbO and BaO: Radiation shielding and optical properties. Ann. Nucl. Energy 38, 1438–1441 (2011)

    CAS  Google Scholar 

  18. A. Kumar, Gamma ray shielding properties of PbO-Li2O-B2O3glasses. Radiat. Phys. Chem. 136, 50–53 (2017)

    CAS  Google Scholar 

  19. S. Kaur, K.J. Singh, Investigation of lead borate glasses doped with aluminium oxide as gamma ray shielding materials. Ann. Nucl. Energy 63, 350–354 (2014)

    CAS  Google Scholar 

  20. A. Kumar, R. Kumar, M. Dogra, S. Manhas, R. Sharma, Kumar, Effect of gamma irradiation on thermoluminescence studies of LiF:Sm3+, Dy3+ nanophosphor. Emerg. Mater. Res. 9, 122–131 (2020)

    CAS  Google Scholar 

  21. S. Kaewjaeng et al., High transparency La2O3–CaO–B2O3–SiO2 glass for diagnosis x-rays shielding material application. Radiat. Phys. Chem. 160, 41–47 (2019)

    CAS  Google Scholar 

  22. A.S. Abouhaswaa, U. Perişanoğluc, H.O. Tekind, E. Kavazc, A.M.A. Henaishe, Nuclear shielding properties of B2O3–Pb3O4–ZnO glasses: multiple impacts of Er2O3 additive. Ceram. Int. 46, 27849–27859 (2020)

    Google Scholar 

  23. M.I. Sayyed, B.O. Elbashir, H.O. Tekin, E.E. Altunsoy, D.K. Gaikwad, Radiation shielding properties of pentaternary borate glasses using MCNPX code. J. Phys. Chem. Solids 121, 17–21 (2018)

    CAS  Google Scholar 

  24. S. Verma, S.K. Sanghi, S.S. Amritphale, Development of advanced, non-toxic, x-ray radiation shielding glass possessing barium, boron substituted kornerupine crystallites in the glassy matrix. J. Inorg. Organomet. Polym. Mater. 28, 35–49 (2018)

    CAS  Google Scholar 

  25. J. Kaewkhao, A. Pokaipisit, P. Limsuwan, Study on borate glass system containing with Bi2O3 and BaO for gamma-rays shielding materials: comparison with PbO. J. Nucl. Mater. 399, 38–40 (2010)

    CAS  Google Scholar 

  26. E.S.A. Waly, M.A. Fusco, M.A. Bourham, Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann. Nucl. Energy 96, 26–30 (2016)

    CAS  Google Scholar 

  27. M.I. Sayyed, M. Çelikbilek Ersundu, A.E. Ersundu, G. Lakshminarayana, P. Kostka, Investigation of radiation shielding properties for MeO-PbCl2-TeO2(MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses. Radiat. Phys. Chem. 144, 419–425 (2018)

    CAS  Google Scholar 

  28. H. Özdemir, B. Camgöz, Gamma radiation shielding effectiveness of cellular woven fabrics. J. Ind. Text. 47, 712–726 (2018)

    Google Scholar 

  29. J.H. Liu et al., Elevated gamma-rays shielding property in lead-free bismuth tungstate by nanofabricating structures. J. Phys. Chem. Solids. 112, 185–189 (2018)

    CAS  Google Scholar 

  30. James E Shelby, Chapter 1, Introduction, in Introduction to Glass Science and Technology: Edition 2, 1– (2006)

  31. M.F. Ashby, Material Profiles in Materials and the Environment (Elsevier, New York, 2013), pp. 459–595

    Google Scholar 

  32. M. Hasanuzzaman, A. Rafferty, M. Sajjia, A.-G. Olabi, Properties of Glass Materials (Reference Module in Materials Science and Materials Engineering, Elsevier, New York, 2016).

    Google Scholar 

  33. Recep Kurtulus, Taner Kavas, Iskender Akkurt, Kadir Gunoglu, An experimental study and WinXCom calculations on X-ray photon characteristics of Bi2O3- and Sb2O3-added waste soda-lime-silica glass. Ceram. Int. 36, 21120–21127 (2020)

    Google Scholar 

  34. M. Berger and J. Hubbell, XCOM: Photon cross sections on a personal computer. Natl. Bur. Stand. Washington, DC (USA). Cent. Radiat. Res. 1–28 (1987)

  35. V.P. Singh, N.M. Badiger, J. Kaewkhao, Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study. J. Non. Cryst. Solids. 404, 167–173 (2014)

    CAS  Google Scholar 

  36. S.A. Tijani, Y. Al-Hadeethi, The influence of TeO2 and Bi2O3 on the shielding ability of lead-free transparent bismuth tellurite glass at low gamma energy range. Ceram. Int. 45, 23572–23577 (2019)

    CAS  Google Scholar 

  37. M.I. Sayyed, G. Lakshminarayana, M.G. Dong, M.Ç. Ersundu, A.E. Ersundu, I.V. Kityk, Investigation on gamma and neutron radiation shielding parameters for BaO/SrO-Bi2O3-B2O3glasses. Radiat. Phys. Chem. 145, 26–33 (2018)

    CAS  Google Scholar 

  38. I. Akkurt, B. Mavi, A. Akkurt, C. Basyigit, S. Kilincarslan, H.A. Yalim, Study on dependence of partial and total mass attenuation coefficients. J. Quant. Spectrosc. Radiat. Transf. 94, 379–385 (2005)

    CAS  Google Scholar 

  39. K. Shah, M.N. Ravindra, Assembly of glass and copolymer particles on a liquid surface: an experimental study. Emerg. Mater. Res. 9, 342–346 (2020)

    Google Scholar 

  40. J.P. Luo, X. Jia, D.L. Zheng, G. Wang, J.F. Sun, M. Yan, A novel approach to achieving a low Young’s modulus in titanium-based metallic glasses. Emerg. Mater. Res. 8, 22–28 (2019)

    Google Scholar 

  41. Ü. Kara, A. Mesbahi, I. Akkurt, Monte Carlo simulation of photoneutron dose in radiotherapy room as a function of gantry angles. Acta Phys. Pol. A 128, 378 (2015)

    Google Scholar 

  42. S. Al-Obaidi, H. Akyıldırım, K. Gunoglu, I. Akkurt, Neutron shielding calculation for barite-boron-water. Acta Phys. Pol. A 137, 551 (2020)

    CAS  Google Scholar 

  43. N.B. Singh, C.-H. Su, F.-S. Choa, B. Arnold, C. Cooper, B. Cullum, L. Kelly, Morphology and performance of organic nanocomposites for γ-ray sensing. Emerg. Mater. Res. 9, 520–526 (2020)

    Google Scholar 

  44. Md.F. Hossain, Md.S. Pervez, A.I. Nahid, Influence of film thickness on optical and morphological properties of TiO2 thin films. Emerg. Mater. Res. 9, 186–191 (2020)

    Google Scholar 

  45. H.M.H. Zakaly, M. Rashad, H.O. Tekin, H.A. Saudi, S.A.M. Issa, A.M. A. , Henaish, Synthesis, optical, structural and physical properties of newly developed dolomite reinforced borate glasses for nuclear radiation shielding utilizations: an experimental and simulation study. Opt. Mater. 114, 110942 (2021)

    CAS  Google Scholar 

  46. R. Kurtulus, T. Kavas, K.A. Mahmoud, I. Akkurt, K. Gunoglu, M.I. Sayyed, The effect of Nb 2 O 5 on waste soda-lime glass in gamma-rays shielding applications. Mater. Sci. Mater. 32, 4903–4915 (2021)

    CAS  Google Scholar 

  47. S.A.M. Issa, M. Ahmad, H.O. Tekin, Y.B. Saddeek, M.I. Sayyed, Effect of Bi2O3 content on mechanical and nuclear radiation shielding properties of Bi2O3-MoO3-B2O3-SiO2-Na2O-Fe2O3 glass system. Results Phys. 13, 102165 (2019)

    Google Scholar 

  48. M.Y. Hanfi, M.I. Sayyed, E. Lacomme, K.A. Mahmoud, I. Akkurt, The influence of MgO on the radiation protection and mechanical properties of tellurite glasses. Nucl. Eng. Technol. (2012). https://doi.org/10.1016/j.net.2020.12.012

    Article  Google Scholar 

  49. G.P. Singh, J. Singh, P. Kaur, S. Kaur, D. Arora, R. Kaur, K. Kaur, D.P. Singh, Analysis of enhancement in gamma ray shielding proficiency by adding WO3 in Al2O3-PbO-B2O3 glasses using Phy-X/PSD. J. Mater. Res. Technol. 9, 14425–14442 (2020)

    CAS  Google Scholar 

  50. Y.S. Rammah, M.I. Sayyed, A.A. Ali, H.O. Tekin, R. El-Mallawany, Optical properties and gamma-shielding features of bismuth borate Glasses. Appl. Phys. A 124, 832 (2018)

    Google Scholar 

  51. A. Canel, H. Korkut, T. Korkut, Improving neutron and gamma flexible shielding by adding medium-heavy metal powder to epoxy based composite materials. Radiat. Phys. Chem. 158, 13–16 (2019)

    CAS  Google Scholar 

  52. T. Korkut, A. Karabulut, G. Budak, B. Aygün, O. Gencel, A.H. Gullar, Investigation of neutrons shielding properties depending on number of boron atoms for colemanite, ulexite and tincal ores by experiments and FLUKA Monte Carlo simulations. Appl. Radiat. Isotopes 70, 341–345 (2012)

    CAS  Google Scholar 

  53. Stolz, W. Radioaktivität e Grundlagen, Messung, Anwendungen. B. G. Teubner. ISBN 3-8154-3022-4 (1996)

  54. R. Khabaz, Assessment of gamma-rays generated by the spontaneous fission source 252Cf using a Monte Carlo method. Ann. Nucl. En. 46, 76–80 (2012)

    CAS  Google Scholar 

  55. A.H. Almuqrin, M.I. Sayyed, A. Kumar, B.O. El-bashir, I. Akkurt, Optical, mechanical properties and gamma ray shielding behavior of TeO2-Bi2O3-PbO-MgO-B2O3 glasses using FLUKA simulation code. Opt. Mater. 113, 110900 (2021)

    CAS  Google Scholar 

  56. J. Briesmeister, MCNP—a General Monte Carlo Code for Neutron and Photon Transport, National Laboratory, Los Alamos, 2000 Report LA13709-M, version 4C.

  57. B. Aygün, E. Şakar, V.P. Singh, M.I. Sayyed, T. Korkut, A. Karabulut, Experimental and Monte Carlo simulation study on potential new composite materials to moderate neutron-gamma radiation. Prog. Nucl. Energy. (2020). https://doi.org/10.1016/j.pnucene.2020.103538

    Article  Google Scholar 

  58. J.K. Shultis, R.E. Faw, Radiation shielding and radiological protection, in Handbook of Nuclear Engineering. ed. by J.K. Shultis, R.E. Faw (Springer, Boston, 2010), pp. 1313–1448

    Google Scholar 

  59. N. Wright A. R. Boulogne, W. C. Reinig, and A. G. Evana. Implantable Californium-252 Neutron Sources for Hadiotherapy.

  60. T. R. England, B. F. Rider, Evaluation and compilation of fission product yields. implantable californium-252 neutron sources for radiotherapy. (1994)

  61. S.V. Smiljanic, S.R. Grujic, M.B. Tosic, V.D. Zivanovic, S.D. Matijasevic, J.D. Nikolic, V.S. Topalovic, Effect of La2O3 on the structure and the properties of strontium borate glasses. Chem. Ind. Chem. Eng. 22, 111–115 (2016)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roya Boodaghi Malidarre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boodaghi Malidarre, R., Akkurt, I. Monte Carlo simulation study on TeO2–Bi2O–PbO–MgO–B2O3 glass for neutron-gamma 252Cf source. J Mater Sci: Mater Electron 32, 11666–11682 (2021). https://doi.org/10.1007/s10854-021-05776-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05776-y

Navigation