Skip to main content

Advertisement

Log in

Engineering electrode/electrolyte interfacial properties of nanotube arrays for high-capacitance supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the effect of imbibition-induced electrolyte wettability over charge carrier density and hence the increase in electric double layer is investigated for morphology-controlled TiO2 nanotube arrays. The nanotube morphology brings in good control over change in surface energy that induces electrolyte wettability. Electrolytes of HCl, KCl, and NaCl were utilized to determine surface energy, surface wettability, and electrochemical studies. The percentage of electrolyte imbibition inside nanopores varies in the order of HCl > KCl > NaCl. The double-layer formation is higher for highly wettable surfaces and is dependent on the percentage of electrolyte imbibition inside nanotube pores. From the observations, it is deduced that the storage performance of nanotube electrodes can be markedly increased by enhancing the molar conductivity and ionic mobility of electrolyte. An areal capacitance of 14.9 mF/cm2 is observed for HCl electrolyte-based supercapacitor. In addition, the cationic radius of electrolyte influences the stability of electrode with a capacitance retention of 87%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Zhu, Y. Xu, J. Wang, J. Lin, X. Sun, S. Mao, Phys. Chem. Chem. Phys. 17, 28666 (2015)

    Article  CAS  Google Scholar 

  2. F. Barzegar, D.Y. Momodu, O.O. Fashedemi, A. Bello, J.K. Dangbegnon, N. Manyala, RSC Adv. 5, 107482 (2015)

    Article  CAS  Google Scholar 

  3. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)

    Article  CAS  Google Scholar 

  4. A. Gonzalez, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016)

    Article  CAS  Google Scholar 

  5. Z. Yu, L. Tetard, L. Zhai, J. Thomas, Energy Environ. Sci. 8, 702 (2015)

    Article  CAS  Google Scholar 

  6. A. Afif, S. Rahman, A. Tasfiah, J. Zaini, M. Aminul, A. Kalam, J. Energy Storage 25, 100852 (2019)

    Article  Google Scholar 

  7. X. Zhao, B.M. Sanchez, P.J. Dobson, P.S. Grant, Nanoscale 3, 839 (2011)

    Article  CAS  Google Scholar 

  8. A. Lamberti, C. Pirri, J. Energy Storage 8, 193 (2016)

    Article  Google Scholar 

  9. C. Clement Raj, R. Prasanth, J. Power Sources 317, 120 (2016)

    Article  Google Scholar 

  10. C.G. Jothi Prakash, C. Clement Raj, R. Prasanth, J. Colloid Interfaces 496, 300 (2017)

    Article  CAS  Google Scholar 

  11. I. Paramasivam, H. Jha, N. Liu, P. Schmuki, Small 8, 3073 (2012)

    Article  CAS  Google Scholar 

  12. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, Sol. Energy Mater. Sol. Cells 90, 2011 (2006)

    Article  CAS  Google Scholar 

  13. P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. 50, 2904 (2011)

    Article  CAS  Google Scholar 

  14. M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K. Zhang, S.S. Al-Deyab, Y. Lai, J. Mater. Chem. A 4, 6772 (2016)

    Article  CAS  Google Scholar 

  15. K. Lee, A. Mazare, P. Schmuki, Chem Rev. 114, 9385 (2014)

    Article  CAS  Google Scholar 

  16. M.S. Kim, T.W. Lee, J.H. Park, J. Electrochem Soc. 156, A584 (2009)

    Article  CAS  Google Scholar 

  17. M. Salari, S.H. Aboutalebi, T. Chidembo, P. Nevirkovets, K. Konstantinov, H.K. Liu, Phys. Chem. Chem. Phys. 14, 4770 (2012)

    Article  CAS  Google Scholar 

  18. C. ClementRaj, R. Sundheep, R. Prasanth, Electrochimica. Acta 176, 1214 (2016)

    Google Scholar 

  19. M. Salari, K. Konstantinov, H.K. Liu, J. Mater. Chem. 21, 5128 (2011)

    Article  CAS  Google Scholar 

  20. B. Chen, J. Hou, K. Lu, Langmuir 29, 5911 (2013)

    Article  CAS  Google Scholar 

  21. X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Nano Lett. 12, 1690 (2012)

    Article  CAS  Google Scholar 

  22. D. Pan, H. Huang, X. Wang, L. Wang, H. Liao, Z. Li, M. Wu, J. Mater. Chem. A 2, 11454 (2014)

    Article  CAS  Google Scholar 

  23. H. Wu, D. Li, X. Xhu, C. Yang, D. Liu, X. Chen, Y. Song, L. Liu, Electrochim. Acta 116, 129 (2014)

    Article  CAS  Google Scholar 

  24. H. Zhou, Y. Zhang, J. Power Sources 239, 128 (2013)

    Article  CAS  Google Scholar 

  25. C. Clement Raj, R. Prasanth, J. Electrochem. Soc. 162, E23 (2015)

    Article  Google Scholar 

  26. S. Berger, J. Kunze, P. Schmuki, A.T. Valota, D.J. LeClere, P. Skeldon, G.E. Thompson, J. Electrochem. Soc. 157, C18 (2010)

    Article  CAS  Google Scholar 

  27. C. Clement Raj, V. Srimurugan, A. Flamina, R. Prasanth, Mater. Chem. Phys. 248, 122925 (2020)

    Article  Google Scholar 

  28. S.P. Albu, H. Tsuchiya, S. Fujimoto, P. Schmuki, Eur. J. Inorg. Chem. 27, 4351 (2010)

    Article  Google Scholar 

  29. K. Xiang, Z. Xu, T. Qu, Z. Tian, Y. Zhang, Y. Wang, M. Xie, X. Guo, W. Ding, X. Guo, Chem. Commun. 53, 12410 (2017)

    Article  CAS  Google Scholar 

  30. M.A. Boda, M.A. Shah, J. Mater. Sci.: Mater. Electron. 29, 4596 (2018)

    CAS  Google Scholar 

  31. Z. Dong, F. Xiao, A. Zhao, L. Liu, T. Sham, Y. Song, RSC Adv. 6, 76142 (2016)

    Article  CAS  Google Scholar 

  32. V.C. Anitha, A.N. Banerjee, G.R. Dillip, S.W. Joo, B.K. Min, J. Phys. Chem. C 120(18), 9569 (2016)

    Article  CAS  Google Scholar 

  33. E.R. Nightingale, J. Phys. Chem. 63, 1381 (1959)

    Article  CAS  Google Scholar 

  34. J. Xu, H. Wu, L. Fu, S. Leung, D. Chen, X. Chen, Z. Fan, G. Shen, D. Li, Adv. Funct. Mater. 24, 1840 (2014)

    Article  CAS  Google Scholar 

  35. S. Deheryan, D.J. Cott, P.W. Mertens, M. Heyns, P.M. Vereecken, Electrochim. Acta 132, 574 (2014)

    Article  CAS  Google Scholar 

  36. V. Raspal, K.O. Awitor, C. Massard, E. Feschet-Chassot, R.S.P. Bokalawela, M.B. Johnson, Langmuir 28, 11064 (2012)

    Article  CAS  Google Scholar 

  37. M.M. Vadiyar, S.C. Bhise, S.K. Patil, S.S. Kolekar, A.R. Shelke, N.G. Deshpande, J.Y. Chang, K.S. Ghule, A.V. Ghule, Chem Commun. 52, 2557 (2016)

    Article  CAS  Google Scholar 

  38. X. Shuai, Z. Bo, J. Kong, J. Yan, K. Cen, RSC Adv. 7, 2667 (2017)

    Article  CAS  Google Scholar 

  39. M. Altomare, N.T. Nguyen, S. Hejazi, P. Schmuki, Adv. Funct. Mater. 28, 1704259 (2018)

    Article  Google Scholar 

  40. P. Atkins, J.D. Paula, Atkin's Physical Chemistry, 7th edn, pp. 719–724 (Oxford University Press, New York, 2002)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge CSIR and BRNS for the financial support through Scheme No. 03(1329)/14/EMR-II, and 2013/34/25/BRNS/2692. The authors thank Central Instrumentation Facility, Pondicherry University, and NCNSNT Madras University for the characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Clement Raj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clement Raj, C., Jothi Prakash, C.G. & Prasanth, R. Engineering electrode/electrolyte interfacial properties of nanotube arrays for high-capacitance supercapacitors. J Mater Sci: Mater Electron 32, 11119–11128 (2021). https://doi.org/10.1007/s10854-021-05778-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05778-w

Navigation