Skip to main content
Log in

Electromagnetic microwave absorption property of MoC synthesized via a facile solid-state reaction method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Carbides are typical electromagnetic microwave (EM) absorbing materials, due to their excellent dielectric properties. Large-scale synthesis of carbides through simple and low-cost methods is a necessary demand for EM pollution treatment. In this work, molybdenum carbide (MoC) was synthesized by a facile solid-state reaction method using carbon nanotubes and carbon black as carbon sources. The as-prepared MoC powders possessed irregular shape and rough surface. The EM absorption property as well as the EM parameters in the range of 2–18 GHz were investigated. It is found that the MoC powders, either carbon nanotubes or carbon black as carbon sources, showed satisfactory EM absorption performance. The powders using carbon nanotubes and carbon black as carbon source displayed the minimum reflection loss of –42.2 dB with a 1.5 mm thickness and –34.3 dB with a 3.0 mm thickness, respectively. The experimental results show that MoC is a promising EM microwave absorbing candidate, and the low-cost synthesis of MoC will be helpful for its large-scale development in EM protection field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Zeng, X. Cheng, R. Yu, G.D. Stucky, Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 168, 606–623 (2020)

    Article  CAS  Google Scholar 

  2. F. Qin, C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys. 111, 061301 (2012)

    Article  CAS  Google Scholar 

  3. J.Y. Yusuf, H. Soleimani, N. Yahya, Y.K. Sanusi, L.L. Adebayo, S. Sikirua, F.A. Wahaab, Recent advances and prospect of cobalt based microwave absorbing materials. Ceram. Inter. 46, 26466–26485 (2020)

    Article  CAS  Google Scholar 

  4. M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao, J. Yuan, 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019)

    Article  CAS  Google Scholar 

  5. H. Chen, B. Zhao, Z. Zhao, H. Xiang, F.Z. Dai, J. Liu, Y. Zhou, Achieving strong microwave absorption capability and wide absorption bandwidth through a combination of high entropy rare earth silicide carbides/rare earth oxides. J. Mater. Sci. Technol. 47, 216–222 (2020)

    Article  Google Scholar 

  6. Z. Man, P. Li, D. Zhou, Y. Wang, X. Liang, R. Zang, P. Li, Y. Zuo, Y.M. Lam, G. Wang, Two birds with one stone: FeS2@C yolk−shell composite for highperformance sodium-ion energy storage and electromagnetic wave absorption. Nano Lett. 20, 3769–3777 (2020)

    Article  CAS  Google Scholar 

  7. W. Huang, Z. Tong, R. Wang, Z. Liao, Y. Bi, Y. Chen, M. Ma, P. Lyu, Y. Ma, A review on electrospinning nanofibers in the field of microwave absorption. Ceram. Inter. 46, 26441–26453 (2020)

    Article  CAS  Google Scholar 

  8. Y.L. Wang, S.H. Yang, H.Y. Wang, G.S. Wang, X.B. Sun, P.G. Yin, Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber. Carbon 167, 485–494 (2020)

    Article  CAS  Google Scholar 

  9. S. Dong, P. Hu, X. Li, C. Hong, X. Zhang, J. Han, NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption. Chem. Eng. J. 398, 125588 (2020)

    Article  CAS  Google Scholar 

  10. D. Zhi, T. Li, J. Li, H. Ren, F. Meng, A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption. Compos. B. Eng. 211, 108642 (2021)

    Article  CAS  Google Scholar 

  11. T. Wang, X. Lu, A. Wang, A review: 3D printing of microwave absorption ceramics. Int. J. Appl. Ceram. Technol. 17, 2477–2491 (2020)

    Article  CAS  Google Scholar 

  12. R. Kuchi, M. Sharma, S.W. Lee, D. Kim, N. Jung, J.R. Jeong, Rational design of carbon shell-encapsulated cobalt nanospheres to enhance microwave absorption performance. Prog. Nat. Sci. 29, 88–93 (2019)

    Article  CAS  Google Scholar 

  13. Y. Wang, X. Di, Z. Lu, X. Wu, Rational construction of hierarchical Co@C@NPC nanocomposites derived from bimetallic hybrid ZIFs/biomass for boosting the microwave absorption. J. Colloid. Interface. Sci. 589, 462–471 (2021)

    Article  CAS  Google Scholar 

  14. J.B. Cheng, H.G. Shi, M. Cao, T. Wang, H.B. Zhao, Y.Z. Wang, Porous carbon materials for microwave absorption. Mater. Adv. 1, 2631–2645 (2020)

    Article  CAS  Google Scholar 

  15. Z. Zhang, Z. Cai, Z. Wang, Y. Peng, L. Xia, S. Ma, Z. Yin, Y. Huang, A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 13, 56 (2021)

    Article  CAS  Google Scholar 

  16. L. Huang, C. Chen, Z. Li, Y. Zhang, H. Zhang, J. Lu, S. Ruan, Y.J. Zeng, Challenges and future perspectives on microwave absorption based on two-dimensional materials and structures. Nanotechnology 31, 162001 (2020)

    CAS  Google Scholar 

  17. Z. Zhang, Z. Cai, Y. Zhang, Y. Peng, Z. Wang, L. Xia, S. Ma, Z. Yin, R. Wang, Y. Cao, Z. Li, Y. Huang, The recent progress of MXene-Based microwave absorption materials. Carbon 174, 484–499 (2021)

    Article  CAS  Google Scholar 

  18. A. Houbi, Z.A. Aldashevich, Y. Atassi, Z.B. Telmanovna, M. Saule, K. Kubanych, Microwave absorbing properties of ferrites and their composites: A review. J. Magn. Magn. Mater. 529, 167839 (2021)

    Article  CAS  Google Scholar 

  19. M. Green, X. Chen, Recent progress of nanomaterials for microwave absorption. J. Materiomics 5, 503–541 (2019)

    Article  Google Scholar 

  20. L. Yan, L. Li, X. Ru, D. Wen, L. Ding, X. Zhang, H. Diao, Y. Qin, Core-shell, wire-in-tube and nanotube structures: Carbon-based materials by molecular layer deposition for efficient microwave absorption. Carbon 173, 145–153 (2021)

    Article  CAS  Google Scholar 

  21. Y. Jiao, S. Cheng, F. Wu, X. Pan, A. Xie, X. Zhu, W. Dong, MOF-Guest complex derived Cu/C nanocomposites with multiple heterogeneous interfaces for excellent electromagnetic waves absorption. Compos. B. Eng. 211, 108643 (2021)

    Article  CAS  Google Scholar 

  22. L. Xu, S. Li, Y. Zhang, Y. Zhai, Synthesis, properties and applications of nanoscale nitrides, borides and carbides. Nanoscale 4, 4900–4915 (2012)

    Article  CAS  Google Scholar 

  23. C. Liang, Z. Wang, Eggplant-derived SiC aerogels with high-performance electromagnetic wave absorption and thermal insulation properties. Chem. Eng. J. 373, 598–605 (2019)

    Article  CAS  Google Scholar 

  24. F. Ye, L. Zhang, X. Yin, Y. Liu, L. Cheng, The improvement of wave-absorbing ability of silicon carbide fibers by depositing boron nitride coating. Appl. Surf. Sci. 270, 611–616 (2013)

    Article  CAS  Google Scholar 

  25. S.C. Chiu, H.C. Yu, Y.Y. Li, High electromagnetic wave absorption performance of silicon carbide nanowires in the gigahertz range. J. Phys. Chem. C 114, 1947–1952 (2010)

    Article  CAS  Google Scholar 

  26. X. Li, X. Yin, H. Xu, M. Han, M. Li, S. Liang, L.L. Cheng Zhang, Ultralight MXene-coated, interconnected SiCnws three dimensional lamellar foams for efficient microwave absorption in the X-band. ACS Appl. Mater. Interfaces 10, 34524–34533 (2018)

    Article  CAS  Google Scholar 

  27. C. Liu, D. Yu, D.W. Kirk, Y. Xu, Electromagnetic wave absorption of silicon carbide based materials. RSC Adv. 7, 595–605 (2017)

    Article  CAS  Google Scholar 

  28. F. Wu, M. Sun, C. Chen, T. Zhou, Y. Xia, A. Xie, Y. Shang, Controllable coating of polypyrrole on silicon carbide nanowires as a core−shell nanostructure: a facile method to enhance attenuation characteristics against electromagnetic radiation. ACS Sustainable Chem. Eng. 7, 2100–2106 (2019)

    Article  CAS  Google Scholar 

  29. C. Liu, D. Yu, D.W. Kirk, Y. Xu, Porous silicon carbide derived from apple fruit with high electromagnetic absorption performance. J. Mater. Chem. C 4, 5349–5356 (2016)

    Article  CAS  Google Scholar 

  30. X. Li, M. Zhang, W. You, K. Pei, Q. Zeng, Q. Han, Y. Li, H. Cao, X. Liu, R. Che, Magnetized MXene microspheres with multiscale magnetic coupling and enhanced polarized interfaces for distinct microwave absorption via a spray-drying method. ACS Appl. Mater. Interfaces 12, 18138–18147 (2020)

    Article  CAS  Google Scholar 

  31. Y. Zhao, S. Wang, H. Liu, X. Guo, X. Zeng, W. Wu, J. Zhang, G. Wang, Porous Mo2C nanorods as an efficient catalyst for the hydrogen evolution reaction. J. Phys. Chem. Solids 132, 230–235 (2019)

    Article  CAS  Google Scholar 

  32. Y. Wang, C. Li, X. Han, D. Liu, H. Zhao, Z. Li, P. Xu, Y. Du, Ultrasmall Mo2C nanoparticle-decorated carbon polyhedrons for enhanced microwave absorption. ACS Appl. Nano Mater. 1, 5366–5376 (2018)

    Article  CAS  Google Scholar 

  33. S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, Y. Du, Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration. Nanoscale 10, 6945–6953 (2018)

    Article  CAS  Google Scholar 

  34. Y. Wang, X. Li, X. Han, P. Xu, L. Cui, H. Zhao, D. Liu, F. Wang, Y. Du, Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption. Chem. Eng. J. 387, 124159 (2020)

    Article  CAS  Google Scholar 

  35. C.Q. Li, X. Shen, R.C. Ding, G.S. Wang, Excellent microwave absorption properties based on a composite of one dimensional Mo2C@C nanorods and a PVDF matrix. RSC Adv. 9, 21243–21248 (2019)

    Article  CAS  Google Scholar 

  36. Y. Wang, X. Han, P. Xu, D. Liu, L. Cui, H. Zhao, Y. Du, synthesis of pomegranate-like Mo2C@C nanoshpheres for highly efficient microwave absorption. Chem. Eng. J. 372, 312–320 (2019)

    Article  CAS  Google Scholar 

  37. H. Lin, Z. Shi, S. He, X. Yu, S. Wang, Q. Gao, Y. Tang, Heteronanowires of MoC-Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chem. Sci. 7, 3399–3405 (2016)

    Article  CAS  Google Scholar 

  38. B. Gao, Y. Huang, S. Wang, H. Lu, L. Zheng, X. Fan, X. Yang, W. Zhang, Y. Wang, Y. Zhang, Q. Gao, Y. Tang, MoC nanodots toward efficient electrocatalytic hydrogen evolution: an interlayer-confined strategy with a 2D-zeolite precursor. J. Mater. Chem. A 9, 4724–4733 (2021)

    Article  CAS  Google Scholar 

  39. S.A. Patil, D.V. Shinde, D.Y. Ahn, D.V. Patil, K.K. Tehare, V.V. Jadhav, J.K. Lee, R.S. Mane, N.K. Shrestha, S.H. Han, A simple, room temperature, solid-state synthesis route for metal oxide nanostructures. J. Mater. Chem. A 2, 13519–13526 (2014)

    Article  CAS  Google Scholar 

  40. F. Xu, H. Yan, J. Chen, Z. Zhang, C. Fan, Nanoscale Co3O4 powders prepared by an enhanced solid-state reaction method. Ceram. Inter. 46, 13893–13899 (2020)

    Article  CAS  Google Scholar 

  41. T. Cotter, B. Frank, W. Zhang, R. Schlögl, A. Trunschke, The impact of V doping on the carbothermal synthesis of mesoporous Mo carbides. Chem. Mater. 25, 3124–3136 (2013)

    Article  CAS  Google Scholar 

  42. Y. Shen, Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications. J. Mater. Chem. A 3, 13114–13188 (2015)

    Article  CAS  Google Scholar 

  43. C. Lv, Z. Huang, Q. Yang, G. Wei, Z. Chen, M.G. Humphrey, C. Zhang, Ultrafast synthesis of molybdenum carbide nanoparticles for efficient hydrogen generation. J. Mater. Chem. A 5, 22805–22812 (2017)

    Article  CAS  Google Scholar 

  44. Y.Y. Chen, Y. Zhang, W.J. Jiang, X. Zhang, Z. Dai, L.J. Wan, J.S. Hu, Pomegranate-like N, P-Doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution. ACS Nano 10, 8851–8860 (2016)

    Article  CAS  Google Scholar 

  45. Y. Cheng, W. Meng, Z. Li, H. Zhao, J. Cao, Y. Du, G. Ji, Towards outstanding dielectric consumption derived from designing one-dimensional mesoporous MoO2/C hybrid heteronanowires. J. Mater. Chem. C 5, 8981–8987 (2017)

    Article  Google Scholar 

  46. J.S. Li, Y. Wang, C.H. Liu, S.L. Li, Y.G. Wang, L.Z. Dong, Z.H. Dai, Y.F. Li, Y.Q. Lan, Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat. Commun. 7, 11204 (2016)

    Article  CAS  Google Scholar 

  47. H. Lin, N. Liu, Z. Shi, Y. Guo, Y. Tang, Q. Gao, Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution. Adv. Funct. Mater. 26, 5590–5598 (2016)

    Article  CAS  Google Scholar 

  48. J. Zhu, E.A. Uslamin, N. Kosinov, E.J.M. Hensen, Tuning the reactivity of molybdenum (oxy)carbide catalysts by the carburization degree: CO2 reduction and anisole hydrodeoxygenation. Catal. Sci. Technol. 10, 3635–3645 (2020)

    Article  CAS  Google Scholar 

  49. X. Wei, N. Li, X. Zhang, Co/CoO/C@B three-phase composite derived from ZIF67 modified with NaBH4 solution as the electrocatalyst for efficient oxygen evolution. Electrochim. Acta 264, 36–45 (2018)

    Article  CAS  Google Scholar 

  50. B. Zhao, G. Shao, B. Fan, W. Zhao, R. Zhang, Facile synthesis and enhanced microwave absorption properties of novel hierarchical heterostructures based on a Ni microsphere-CuO nano-rice core-shell composite. Phys. Chem. Chem. Phys. 17, 6044–6052 (2015)

    Article  CAS  Google Scholar 

  51. P. Yao, Y. Qian, W. Li, C. Li, J. Zuo, J. Xu, M. Li, Exploration of dielectric and microwave absorption properties of quaternary MAX phase ceramic (Cr2/3Ti1/3)3AlC2. Ceram. Int. 46, 22919–22926 (2020)

    Article  CAS  Google Scholar 

  52. B. Wei, J. Zhou, Z. Yao, A.A. Haidry, K. Qian, H. Lin, X. Guo, W. Chen, Excellent microwave absorption property of nano-Ni coated hollow silicon carbide core-shell spheres. Appl. Surf. Sci. 508, 145261 (2020)

    Article  CAS  Google Scholar 

  53. B. Quan, X. Liang, G. Ji, Y. Cheng, W. Liu, J. Ma, Y. Zhang, D. Li, G. Xu, Dielectric polarization in electromagnetic wave absorption: review and perspective. J. Alloys Compd. 728, 1065–1075 (2017)

    Article  CAS  Google Scholar 

  54. J. Lv, Y. Cheng, W. Liu, B. Quan, X. Liang, G. Ji, Y. Du, Achieving better impedance matching by a sulfurization method through converting Ni into NiS/Ni3S4 composites. J. Mater. Chem. C 6, 1822–1828 (2018)

    Article  CAS  Google Scholar 

  55. S. Dong, W. Zhang, X. Zhang, P. Hua, J. Han, Designable synthesis of core-shell SiCw@C heterostructures with thickness-dependent electromagnetic wave absorption between the whole X-band and Ku-band. Chem. Eng. J. 354, 767–776 (2018)

    Article  CAS  Google Scholar 

  56. M. Han, X. Yin, H. Wu, Z. Hou, C. Song, X. Li, L. Zhang, L. Cheng, Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 8, 21011–21019 (2016)

    Article  CAS  Google Scholar 

  57. L. Zhu, X. Zeng, M. Chen, R. Yu, Controllable permittivity in 3D Fe3O4/CNTs network for remarkable microwave absorption performances. RSC Adv. 7, 26801–26808 (2017)

    Article  CAS  Google Scholar 

  58. Y. Huo, K. Zhao, Z. Xu, Y. Tang, Electrospinning synthesis of SiC/Carbon hybrid nanofibers with satisfactory electromagnetic wave absorption performance. J. Alloy. Comp. 815, 152458 (2020)

    Article  CAS  Google Scholar 

  59. D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu, W. Chu, X. Han, Y. Du, Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (ZR2020ME028 and ZR2020QE038), the Natural Science Foundation of Jiangsu Province (BK20180230), the China Postdoctoral Science Foundation (2018M632673), and the Fundamental Research Funds of Shandong University (2019JCG004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weili Wang or Guoxun Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Sun, G., Sun, X. et al. Electromagnetic microwave absorption property of MoC synthesized via a facile solid-state reaction method. J Mater Sci: Mater Electron 32, 24351–24362 (2021). https://doi.org/10.1007/s10854-021-06906-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06906-2

Navigation