Skip to main content
Log in

Dynamic electric, modulus and impedance study of Ni0.5Cu0.2Cd0.3Fe2-zAlzO4 nanoparticles with magnetization and Rietveld analysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The ferrite nanoparticles of Ni0.5Cu0.2Cd0.3Fe2-zAlzO4 (0.00 ≤ z ≤ 0.075 with step 0.015) were synthesized with popular sol–gel method and their physical, magnetic and electrical transport characteristics have been analysed. The X-ray diffraction pattern confirms the precise single-phase spinel structure for every composition as justified by the Rietveld refinement analysis. The Field emission scanning electron microscopy (FESEM) technique reveals surface morphology of the synthesized sample at nanoscale. The FESEM image shows the nanosized (99–46 nm) ferrites with narrow size distribution occupying spherical shapes. To illustrate magnetic characteristics, vibrating sample magnetometer and the law of approach to saturation has been used to analyse (M–H) data in saturation region in order to extract the hysteresis parameters. The intrinsic saturation magnetization (Ms) as well as magnetic moment are found to increase with Al3+ substitution up to z = 0.03. The dielectric properties (real and imaginary part, loss tangent (tanδ) and ac conductivity (σac) were measured with frequency at room temperature. Both tanδ and σac were decreased with Al content showing potentiality for high-frequency applications. Complex impedance studies disclose the increase of grain resistance and grain boundary resistance with increasing Al content. Modulus spectroscopy study shows the dynamics of conduction mechanism in the synthesized ferrite nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S. Odenbach, K. H. J. Buschow (Eds.) (2006) Handbook of magnetic materials, vol. 16, Amsterdam, North-Holland, p. 127

  2. P. Tartaj, M.D.D. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno, C.J. Serna, J. Phys. D Appl. Phys. 36, R182 (2003)

    Article  CAS  Google Scholar 

  3. M. Faraji, Y. Yamini, M. Rezaee, J. Iran. Chem. Soc. 7, 1 (2010)

    Article  CAS  Google Scholar 

  4. C.M. Niemeyer, Angew. Chem. Int. Ed. 40, 4128 (2001)

    Article  CAS  Google Scholar 

  5. D.K. Pradhan, P. Misra, V.S. Puli, S. Sahoo, D.K. Pradhan, R.S. Katiyar, J. Appl. Phys. 115, 243904 (2014)

    Article  CAS  Google Scholar 

  6. A.A. Sattar, H.M. El-Sayed, M.M. El-Tabey, J. Mater. Sci. 40, 4873 (2005)

    Article  CAS  Google Scholar 

  7. I. Maghsoudi, H. Shokrollahi, M.J. Hadianfard, J. Amighian, Powder Technol. 235, 110 (2013)

    Article  CAS  Google Scholar 

  8. I.H. Gul, E. Pervaiz, Mater. Res. Bull. 47, 1353 (2012)

    Article  CAS  Google Scholar 

  9. V. Chaudhari, S.E. Shirsath, M.L. Mane, R.H. Kadam, S.B. Shelke, D.R. Mane, J. Alloys Compd. 549, 213–220 (2013)

    Article  CAS  Google Scholar 

  10. B.B. Patil, A.D. Pawar, D.B. Bhosale, J.S. Ghodake, J.B. Thorat, T.J. Shinde, J. Nanostruct. Chem. 9, 119–128 (2019)

    Article  Google Scholar 

  11. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, London, 1959)

    Google Scholar 

  12. M.Y. Lodhi, K. Mahmood, A. Mahmood, H. Malik, M.F. Warsi, I. Shakir, M. Asghar, M.A. Khan, Curr. Appl. Phys. 14(5), 716–720 (2014)

    Article  Google Scholar 

  13. D.M. Jnaneshwara, D.N. Avadhani, B. Daruka Prasad, H. Nagabhushana, B. M. Nagabhushana, S.C. Sharma, S.C. Prashantha, C. Shivakumara (2014) Spectrochim. Acta Mol. Biomol. Spectrosc. 132: 256–262

  14. H. Anwar, A. Maqsood, J. Supercond. Nov. Magn. 25(6), 1913–1920 (2012)

    Article  CAS  Google Scholar 

  15. S. Ikram, J. Jacob, M.I. Arshad, K. Mahmood, A. Ali, N. Sabir, N. Amin, S. Hussain, Ceram. Int. 45, 119–128 (2019)

    Article  CAS  Google Scholar 

  16. L. Kumar, P. Kumar, A. Narayan, M. Kar, Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite. Int. Nano Lett. 3(1), 1–12 (2013)

    Article  CAS  Google Scholar 

  17. M. Arifuzzaman, M.B. Hossen, Results Phys. 16, 102824 (2020)

    Article  Google Scholar 

  18. L. Kumar, M. Kar, J. Exp. Nanosci. 9(4), 362–374 (2014)

    Article  CAS  Google Scholar 

  19. M.I. Mendelson, Average grain size in polycrystalline ceramics. J. Am. Ceram. Soc. 52(8), 443–446 (1969)

    Article  CAS  Google Scholar 

  20. T.J. Shinde, A.B. Gadkari, P.N. Vasambekar, J. Mater. Sci. Mater. Electron. 21(2), 120–124 (2010)

    Article  CAS  Google Scholar 

  21. M.K. Anupama, N. Srinatha, S. Matteppanavar, B. Angadia, B. Sahoo, B. Rudraswamy, Ceram. Int. 44(5), 4946–4954 (2018)

    Article  CAS  Google Scholar 

  22. A.K.M. Akhter Hossain, L.M. Rahman, J. Magn. Magn. Mat. 323, 1954–1962 (2011)

    Article  CAS  Google Scholar 

  23. P.B. Belavi, G.N. Chavan, B.K. Bammannavar, L.R. Naik, R.K. Kotnala, J. Mat. Chem. Phys. 132, 138–144 (2012)

    Article  CAS  Google Scholar 

  24. H.S.C. O’Neill, A. Navrotsky, Am. Miner. 68, 181–194 (1983)

    Google Scholar 

  25. O.M. Hemeda, M.M. Barakat, J. Magn. Magn. Mater. 223, 127 (2001)

    Article  CAS  Google Scholar 

  26. D.R. Patil, B.K. Chougule, J. Mat. Chem. Phys. 117, 35 (2009)

    Article  CAS  Google Scholar 

  27. S. Dagar, A. Hooda, S. Khasa, M. Malik, J. Alloy. Compd. 806, 737–752 (2019)

    Article  CAS  Google Scholar 

  28. J.C. Maxwell, Electricity and Magnetism, vol. 2 (Oxford University Press, New York, 1973), p. 828

    Google Scholar 

  29. K.W. Wagner, Ann. Phys. 345, 817–855 (1913)

    Article  Google Scholar 

  30. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  CAS  Google Scholar 

  31. L.T. Rabinkin, Z.I. Novikova, Acad. Nauk. USSR Minsk. 146 (1960)

  32. N. Popandan, P. Balay, A. Narayansamy, J. Phys. Condens. Matter. 14, 3221 (2002)

    Article  Google Scholar 

  33. M. Hashim, S.E. Shirsath, S. Kumar, R. Kumar, A.S. Roy, J. Shah, R.K. Kotnala, J. Alloy. Compd. 549, 348 (2013)

    Article  CAS  Google Scholar 

  34. A. Thakura, P. Mathura, M. Singh, J. Phys. Chem. Solids 68, 378 (2007)

    Article  CAS  Google Scholar 

  35. M.L.S. Teo, L.B. Kong, Z.W. Li, G.Q. Lin, Y.B. Gan, J. Alloys Compd. 459, 567 (2008)

    Article  CAS  Google Scholar 

  36. D. Ravinder, K. Vijayakumar, Bull. Mater. Sci. 24(5), 505 (2001)

    Article  CAS  Google Scholar 

  37. V.L. Mathe, K.K. Patanakar, M.B. Kothale, S.B. Kulakarni, P.B. Joshi, S.A. Patil, Pramana J. Phys. 58(5 & 6), 1105 (2002)

    Article  CAS  Google Scholar 

  38. M. Hashim, S. Kumar, S. Ali, B. H. Koo, H. Chung, R. Kumar (2012) J. Alloys Compd. 511: 107

  39. B. K. Kumar, G. P. Srivastava, P. Kishen, Proc. ICF-5(Bombay) (1988) 233.

  40. M.A. Ahmed, M.K.E. Nimar, A. Tawfik, A.M.E. Hasab, J. Magn. Magn. Mater. 98, 33 (1991)

    Article  CAS  Google Scholar 

  41. R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Kolekar, Smart Mater. Struct. 18(11), 115028 (2009)

    Article  CAS  Google Scholar 

  42. J. Liu, C.G. Duan, W.G. Yin, J. Chem. Phys. 119, 2812 (2003)

    Article  CAS  Google Scholar 

  43. C. León, M.L. Lucía, J. Santamaría, Phys. Rev. B 55, 882 (1997)

    Article  Google Scholar 

  44. R. Richert, H. Wagner, Solid State Ionics 105, 167 (1998)

    Article  CAS  Google Scholar 

  45. N. G. McCru, B. E. Read, G. Williams, Wiley, New York (1967).

  46. A. Marsha, S.N. Chowdhury, K. Prashad, R.N.P. Choudhary, Phys. B 406, 3279 (2011)

    Article  CAS  Google Scholar 

  47. I. Ali, M.U. Islam, M.N. Ashiq, I. Shakir, N. Karamat, M. Ishaque, M.N. Akhtar, H.M. Khan, M. Irfan, M.A. Khan, Ceram. Int. 41, 8748 (2015)

    Article  CAS  Google Scholar 

  48. B.V.R. Chowdari, R. Gopalkrishnnan, Solid State Ionics 23, 225 (1987)

    Article  CAS  Google Scholar 

  49. M.F. Mahmood, M.B. Hossen, J. Mater. Sci. Mater. Electron. 32, 14248–14273 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Belal Hossen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Also, there is no conflict of interest for this submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul Mannan, M., Belal Hossen, M. Dynamic electric, modulus and impedance study of Ni0.5Cu0.2Cd0.3Fe2-zAlzO4 nanoparticles with magnetization and Rietveld analysis. J Mater Sci: Mater Electron 32, 24524–24539 (2021). https://doi.org/10.1007/s10854-021-06930-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06930-2

Navigation