Skip to main content
Log in

Bismuth sulfide bridged Bi2S3/sulfuretted ZnAl-LDHs heterojunctions for synergetic enhancement of photodegradation activity towards tetracycline degradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Delicate fabrication grounded on 2D epitaxial heterostructure can be identified as an available strategy to sufficiently discover and utilize its preponderances. Herein, bismuth sulfide-bridged Bi2S3/sulfuretted ZnAl-LDHs (Bi2S3/ZnAlSx) heterojunctions were rationally designed and fabricated via simple ion-exchange and hydrothermal treatment methods. The photocatalytic activities of the heterojunction composites were evaluated for the degradation of tetracycline (TC) under visible-light irradiation. Compared to the ZnAl-LDHs and ZnAlSx, the composites showed the best visible-light-driven photocatalytic performance for TC degradation due to the intimate contact between ZnAlSx and Bi2S3. In additional, upon the proper weight ratio of Bi2S3 (20 wt%), the as-synthesized production exhibited the highest photodegradation efficiency for TC (90.89%) under visible-light irradiation. Surprisingly, the apparent reaction rate constant (k) of Bi2S3/ZnAlSx is approximately 3.3-folds higher than ZnAlSx. Moreover, the possible reaction mechanism of the enhanced photocatalytic activity was proposed resulting from inhibited the recombination between photogenerated electrons and holes. Additionally, the 20 wt% Bi2S3/ZnAlSx showed the high removal efficiency (80.18%) for TC pollutants after four continuous cycles. This work underlines the important of heterostructure construction and further testifies that bismuth sulfide-bridged Bi2S3/sulfuretted ZnAl-LDHs (Bi2S3/ZnAlSx) are promising photocatalysts for the decomposition of antibiotics from waste water under visible-light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24, 229–251 (2012)

    Article  CAS  Google Scholar 

  2. F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013)

    Article  CAS  Google Scholar 

  3. A.B. Djurišić, Y. He, A.M.C. Ng, Visible-light photocatalysts: prospects and challenges. APL Mater. 8, 030903 (2020)

    Article  Google Scholar 

  4. X. Duan, C. Wang, J.C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, X. Duan, Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1230 (2014)

    Article  CAS  Google Scholar 

  5. W. Zhou, W. Li, J. Wang, Y. Qu, Y. Yang, Y. Xie, K. Zhang, L. Wang, H. Fu, D. Zhao, Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 134, 9280–9283 (2014)

    Article  Google Scholar 

  6. Z. Xing, J. Zhang, J. Cui, J. Yin, T. Zhao, J. Kuang, Z. Xiu, N. Wan, W. Zhou, Recent advances in floating TiO2-based photocatalysts for environmental application. Appl. Catal. B 225, 452–467 (2018)

    Article  CAS  Google Scholar 

  7. N.N.T. Ton, A.T.N. Dao, K. Kato, T. Ikenaga, D.X. Trinh, T. Taniike, One-pot synthesis of TiO2/graphene nanocomposites for excellent visible light photocatalysis based on chemical exfoliation method. Carbon 133, 109–117 (2018)

    Article  CAS  Google Scholar 

  8. H.E. Emam, M. El-Shahat, R.M. Abdelhameed, Observable removal of pharmaceutical residues by highly porous photoactive cellulose acetate@MIL-MOF film. J. Hazard. Mater. 414, 125509 (2021)

    Article  CAS  Google Scholar 

  9. H.E. Emam, H.B. Ahmed, R.M. Abdelhameed, Melt intercalation technique for synthesis of hetero-metallic@chitin bio-composite as recyclable catalyst for prothiofos hydrolysis. Carbohydr. Polym. 266, 118163 (2021)

    Article  CAS  Google Scholar 

  10. S. Mansingh, K.K. Das, A. Behera, S. Subudhi, S. Sultana, K. Parida, Bandgap engineering via boron and sulphur doped carbon modified anatase TiO2: a visible light stimulated photocatalyst for photo-fixation of N2 and TCH degradation. Nanoscale Adv. 2, 2004–2017 (2020)

    Article  CAS  Google Scholar 

  11. S. Mansingh, D.K. Padhi, K. Parida, Bio-surfactant assisted solvothermal synthesis of magnetic retrievable Fe3O4@rGO nanocomposite for photocatalytic reduction of 2-nitrophenol and degradation of TCH under visible light illumination. Appl. Surf. Sci. 466, 679–690 (2019)

    Article  CAS  Google Scholar 

  12. D. Kandi, A. Behera, S. Sahoo, K. Parida, CdS QDs modified BiOI/Bi2MoO6 nanocomposite for degradation of quinolone and tetracycline types of antibiotics towards environmental remediation. Sep. Purif. Technol. 253, 117523 (2020)

    Article  CAS  Google Scholar 

  13. H.E. Emam, H.B. Ahmed, E. Gomaa, M.H. Helal, R.M. Abdelhameed, Recyclable photocatalyst composites based on Ag3VO4 and Ag2WO4 @MOF@cotton for effective discoloration of dye in visible light. Cellulose 27, 7139–7155 (2020)

    Article  CAS  Google Scholar 

  14. H.E. Emam, H.B. Ahmed, E. Gomaa, M.H. Helal, R.M. Abdelhameed, Doping of silver vanadate and silver tungstate nanoparticles for enhancement the photocatalytic activity of MIL-125-NH2 in dye degradation. J. Photochem. Photobiol. A 383, 111986 (2019)

    Article  CAS  Google Scholar 

  15. R.M. Abdelhameed, M. El-Shahat, H.E. Emam, Employable metal (Ag&Pd)@MIL-125-NH2@cellulose acetate film for visible-light driven photocatalysis for reduction of nitro-aromatics. Carbohydr. Polym. 247, 116695 (2020)

    Article  CAS  Google Scholar 

  16. S. Subudhi, S. Mansingh, G. Swain, A. Behera, D. Rath, K. Parida, HPW-anchored UiO-66 metal-organic framework: a promising photocatalyst effective toward tetracyclinehydrochloride degradation and H2 evolution via Z-Scheme charge dynamics. Inorg. Chem. 58, 4921–4934 (2019)

    Article  CAS  Google Scholar 

  17. D.P. Sahoo, K.K. Das, S. Patnaik, K. Parida, Double charge carrier mechanism through 2D/2D interface-assisted ultrafast water reduction and antibiotic degradation over architectural S, P co-doped g-C3N4/ZnCr LDH photocatalyst. Inorg. Chem. Front. 7, 3695–3717 (2020)

    Article  CAS  Google Scholar 

  18. B. Baral, S. Mansingh, K.H. Reddy, R. Bariki, K. Parida, Architecting a double charge-transfer dynamics In2S3/BiVO4 n-n isotype heterojunction for superior photocatalytic oxytetracycline hydrochloride degradation and water oxidation reaction: unveiling the association of physicochemical, electrochemical, and photocatalytic properties. ACS Omega 5, 5270–5284 (2020)

    Article  CAS  Google Scholar 

  19. Y. Wang, Y. Zhou, Y. Wang, Humidity activated ionic-conduction formaldehyde sensing of reduced graphene oxide decorated nitrogen-doped MXene/titanium dioxide composite film. Sens. Actuators B 323, 128695 (2020)

    Article  CAS  Google Scholar 

  20. Y.J. Jang, J.S. Lee, Photoelectrochemical water splitting with p-type metal oxide semiconductor photocathodes. Chemsuschem 12, 1835–1845 (2019)

    Article  CAS  Google Scholar 

  21. G. Zhao, C. Li, X. Wu, J. Yu, X. Jiang, W. Hu, F. Jiao, Reduced graphene oxide modified NiFe-calcinated layered double hydroxides for enhanced photocatalytic removal of methylene blue. Appl. Surf. Sci. 434, 251–259 (2018)

    Article  CAS  Google Scholar 

  22. K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang, J. Ye, MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 8, 7078–7087 (2014)

    Article  CAS  Google Scholar 

  23. T. Jia, A. Kolpin, C. Ma, R.C. Chan, W.M. Kwok, S.C. Tsang, A graphene dispersed CdS-MoS2 nanocrystal ensemble for cooperative photocatalytic hydrogen production from water. Chem. Commun. 50, 1185–1188 (2014)

    Article  CAS  Google Scholar 

  24. M. Tanveer, C. Cao, Z. Ali, I. Aslam, F. Idrees, W.S. Khan, F.K. But, M. Tahira, N. Mahmood, Template free synthesis of CuS nanosheet-based hierarchical microspheres: an efficient natural light driven photocatalyst. CrystEngComm 16, 5290–5300 (2014)

    Article  CAS  Google Scholar 

  25. Y. Chen, G. Tian, T. Feng, W. Zhou, Z. Ren, T. Han, Y. Xiao, H. Fu, Single-crystalline Bi19Br3S27 nanorods with an efficiently improved photocatalytic activity. CrystEngComm 17, 6120–6126 (2015)

    Article  CAS  Google Scholar 

  26. Y. Chena, G. Tiana, Y. Shia, Y. Xiao, H. Fua, Hierarchical MoS2/Bi2MoO6 composites with synergistic effect for enhanced visible photocatalytic activity. Appl. Catal. B 164L, 40–47 (2015)

    Article  Google Scholar 

  27. L. Zheng, F. Teng, X. Ye, H. Zheng, X. Fang, Photo/electrochemical applications of metal sulfide/TiO2 heterostructures. Adv. Energy Mater. 10, 1902355 (2019)

    Article  Google Scholar 

  28. C. Li, S. Chen, X. Gao, W. Zhang, Y. Wang, Fabrication, characterization and photoelectrochemical properties of CdS/CdSe nanofilm co-sensitized ZnO nanorod arrays on Zn foil substrate. J. Colloid Interface Sci. 588, 269–282 (2021)

    Article  CAS  Google Scholar 

  29. Y. Shi, X. Xiong, S. Ding, X. Liu, Q. Jiang, J. Hu, In-situ topotactic synthesis and photocatalytic activity of plate-like BiOCl/2D networks Bi2S3 heterostructures. Appl. Catal. B 220, 570–580 (2018)

    Article  CAS  Google Scholar 

  30. O. Amiri, F. Beshkar, S.S. Ahmed, A. Rafiei-Miandashti, P.H. Mahmood, A.A. Dezaye, Novel flower-like (Bi(Bi2S3)9I3)2/3 nanostructure as efficient photocatalyst for photocatalytic desulfurization of benzothiophene under visible light irradiation. Adv. Powder Technol. 32, 1088–1098 (2021)

    Article  CAS  Google Scholar 

  31. Y. Genga, C. Taoa, S. Duana, J. Martin, Y. Lin, X. Zhu, Q. Zhang, X. Kang, S. He, Y. Zhao, X. Li, L. Niu, D. Qin, Y. Yan, D. Han, V-rich Bi2S3 nanowire with efficient charge separation and transport for high-performance and robust photoelectrochemical application under visible light. Catal. Today 350, 47–55 (2020)

    Article  Google Scholar 

  32. J. Guo, Y. Zhang, Z. Wang, F. Zheng, Z. Ge, J. Fu, J. Feng, High thermoelectric properties realized in earth-abundant Bi2S3 bulk via carrier modulation and multi-nano-precipitates synergy. Nano Energy 78, 105227 (2020)

    Article  CAS  Google Scholar 

  33. J. Hu, Z. Guan, Y. Liang, J. Zhou, Q. Liu, H. Wang, H. Zhang, R. Du, Bi2S3 modified single crystalline rutile TiO2 nanorod array films for photoelectrochemical cathodic protection. Corros. Sci. 125, 59–67 (2017)

    Article  CAS  Google Scholar 

  34. G. Zhao, Y. Zheng, Z. He, Z. Lu, L. Wang, C. Li, F. Jiao, C. Deng, Synthesis of Bi2S3 microsphere and its efficient photocatalytic activity under visible-light irradiation. Trans. Nonferr. Met. Soc. China 28, 2002–2010 (2018)

    Article  CAS  Google Scholar 

  35. G. Zhao, J. Zou, X. Chen, J. Yu, F. Jiao, Layered double hydroxides materials for photo(electro-) catalytic applications. Chem. Eng. J. 397, 125407 (2020)

    Article  CAS  Google Scholar 

  36. K. Wang, Z. Xing, M. Dua, S. Zhang, Z. Li, K. Pan, W. Zhou, Hollow MoSe2@Bi2S3/CdS core-shell nanostructure as dual Z-scheme heterojunctions with enhanced full spectrum photocatalytic-photothermal performance. Appl. Catal. B 281, 119482 (2021)

    Article  CAS  Google Scholar 

  37. W. Dai, J. Yu, S. Luo, X. Hu, L. Yang, S. Zhang, B. Li, X. Luo, J. Zou, WS2 quantum dots seeding in Bi2S3 nanotubes: A novel vis-NIR light sensitive photocatalyst with low-resistance junction interface for CO2 reduction. Chem. Eng. J. 389, 123430 (2020)

    Article  CAS  Google Scholar 

  38. S. Nayak, G. Swain, K. Parida, Enhanced photocatalytic activities of RhB degradation and H2 evolution from in situ formation of the electrostatic heterostructure MoS2/NiFe LDH nanocomposite through the Z-Scheme mechanism via p-n heterojunctions. ACS Appl. Mater. Interfaces 11, 20923–20942 (2019)

    Article  CAS  Google Scholar 

  39. S. Nayak, L. Mohapatra, K. Parida, Visible light-driven novel g-C3N4/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction. J. Mater. Chem. A 3, 18622–18635 (2015)

    Article  CAS  Google Scholar 

  40. L. Mohapatra, K. Parida, A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts. J. Mater. Chem. A 4, 10744–10766 (2016)

    Article  CAS  Google Scholar 

  41. G. Zhao, J. Hu, J. Zou, J. Yu, F. Jiao, X. Chen, The construction of NiFeSx/g-C3N4 composites with high photocatalytic activity towards the degradation of refractory pollutants. Dalton Trans. 50, 2436–2447 (2021)

    Article  CAS  Google Scholar 

  42. J. Hu, G. Zhao, X. Long, Y. Wang, F. Jiao, In situ topotactic fabrication of ZnS nanosheet by using ZnAl-layered double hydroxide template for enhanced tetracycline pollutant degradation activity. Mater. Sci. Semicond. Process. 134, 106007 (2021)

    Article  CAS  Google Scholar 

  43. H. Jiang, Z. Xing, Z. Li, K. Pan, Z. Yang, K. Wang, M. Guo, S. Yang, W. Zhou, Wide-spectrum response urchin-like Bi2S3 spheres and ZnS quantum dots co-decorated mesoporous g-C3N4 nanosheets heterojunctions for promoting charge separation and enhancing photothermal-photocatalytic performance. Appl. Surf. Sci. 527, 146653 (2020)

    Article  CAS  Google Scholar 

  44. S. Tan, C.C. Mayorga-Martinez, Z. Sofer, M. Pumera, Bipolar electrochemistry exfoliation of layered metal chalcogenides Sb2S3 and Bi2S3 and their hydrogen evolution applications. Chemistry 26, 6479–6483 (2020)

    Article  CAS  Google Scholar 

  45. Z. Abideen, F. Teng, Enhanced photochemical activity and stability of ZnS by a simple alkaline treatment approach. CrystEngComm 20, 7866–7879 (2018)

    Article  Google Scholar 

  46. R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. Al-Douri, XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 39, 2283–2292 (2013)

    Article  CAS  Google Scholar 

  47. B. Shao, Z. Liu, G. Zeng, Z. Wu, Y. Liu, M. Cheng, M. Chen, Y. Liu, W. Zhang, H. Feng, Nitrogen-doped hollow mesoporous carbon spheres modified g-C3N4/Bi2O3 direct dual semiconductor photocatalytic system with enhanced antibiotics degradation under visible light. ACS Sustain. Chem. Eng. 6, 16424–16436 (2018)

    Article  CAS  Google Scholar 

  48. Y. Ng, S. Iked, M. Matsumura, R. Amal, A perspective on fabricating carbon-based nanomaterials by photocatalysis and their applications. Energy Environ. Sci. 5, 9307 (2012)

    Article  CAS  Google Scholar 

  49. W.K. Jo, N.C.S. Selvam, Z-scheme CdS/g-C3N4 composites with RGO as an electron mediator for efficient photocatalytic H2 production and pollutant degradation. Chem. Eng. J. 317, 913–924 (2017)

    Article  CAS  Google Scholar 

  50. A. Mragui, O. Zegaoui, J. Silva, Elucidation of the photocatalytic degradation mechanism of an azo dye under visible light in the presence of cobalt doped TiO2 nanomaterials. Chemosphere 266, 128931 (2021)

    Article  Google Scholar 

  51. X. Yao, B. Zhang, S. Cui, S. Yang, X. Tang, Fabrication of SnSO4-modified TiO2 for enhance degradation performance of methyl orange (MO) and antibacterial activity. Appl. Surf. Sci. 551, 149419 (2021)

    Article  CAS  Google Scholar 

  52. Y. Lo, C. Chang, P. Lin, S. Lin, C. Wang, Direct growth of structurally controllable hydroxyapatite coating on Ti-6Al-4V through a rapid hydrothermal synthesis. Appl. Surf. Sci. 556, 149672 (2021)

    Article  CAS  Google Scholar 

  53. D. Wang, H. Sun, Q. Luo, X. Yang, R. Yin, An efficient visible-light photocatalyst prepared from g-C3N4 and polyvinyl chloride. Appl. Catal. B 156–157, 323–330 (2014)

    Article  Google Scholar 

  54. J. Cao, B. Xu, H. Lin, B. Luo, S. Chen, Novel heterostructured Bi2S3/BiOI photocatalyst: facile preparation, characterization and visible light photocatalytic performance. Dalton Trans. 41, 11482–11490 (2012)

    Article  CAS  Google Scholar 

  55. X. Liu, H. Cao, J. Yin, Generation and photocatalytic activities of Bi@Bi2O3 microspheres. Nano Res. 4, 470–482 (2011)

    Article  CAS  Google Scholar 

  56. N.P. Ferraz, A.E. Nogueira, F.C.F. Marcos, V.A. Machado, R.R. Rocca, E.M. Assaf, Y.J.O. Asencios, CeO2-Nb2O5 photocatalysts for degradation of organic pollutants in water. Rare Met. 39, 230–240 (2019)

    Article  Google Scholar 

  57. Y. Guiyun, H. Fengxian, C. Weiwei, H. Zitong, L. Chao, D. Yong, ZnCuAl-LDH/Bi2MoO6 nanocomposites with improved visible light-driven photocatalytic degradation. Acta Phys. Chim. Sin. 36, 1911016–1911025 (2020)

    Article  Google Scholar 

  58. X. Meng, Z. Xu, M. Wang, H. Yin, S. Ai, Electrochemical behavior of antipyrine at a Bi2S3 modified glassy carbon electrode and its determination in pharmaceutical formulations. Anal. Methods 4, 1736 (2012)

    Article  CAS  Google Scholar 

  59. L. Tie, R. Sun, H. Jiang, Y. Liu, Y. Xia, Y. Li, H. Chen, C. Yu, S. Dong, J. Sun, J. Sun, J. Alloys Compd. 807, 151670 (2019)

    Article  CAS  Google Scholar 

  60. J. Zhang, Y. Hu, X. Jiang, S. Chen, S. Meng, X. Fu, Design of a direct Z-scheme photocatalyst: preparation and characterization of Bi2O3/g-C3N4 with high visible light activity. J. Hazard. Mater. 280, 713–722 (2014)

    Article  CAS  Google Scholar 

  61. L. Zhang, S. Li, B. Liu, D. Wang, T. Xie, Highly efficient CdS/WO3 photocatalysts: Z-Scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light. ACS Catal. 4, 3724–3729 (2014)

    Article  CAS  Google Scholar 

  62. Y. Wang, S. Zhang, Y. Ge, C. Wang, J. Hu, H. Liu, Highly efficient photocatalytic degradation of tetracycline using a bimetallic oxide/carbon photocatalyst. Acta Phys. Chim. Sin. 36, 1905083–1905092 (2020)

    Article  Google Scholar 

  63. T.-R. Zhang, G. Liu, Y.-F. Zhu, Editorial for rare metals, special issue on photocatalysis. Rare Met. 38, 359–360 (2019)

    Article  CAS  Google Scholar 

  64. P. Wang, Y. Tang, Z. Dong, Z. Chen, T. Lim, Ag–AgBr/TiO2/RGO nanocomposite for visible-light photocatalytic degradation of penicillin G. J. Mater. Chem. A 1, 4718 (2013)

    Article  CAS  Google Scholar 

  65. S. Nayak, K.M. Parida, Deciphering Z-scheme charge transfer dynamics in heterostructure NiFe-LDH/N-rGO/g-C3N4 nanocomposite for photocatalytic pollutant removal and water splitting reactions. Sci. Rep. 9, 2458 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21776319), Supported by the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University (CSUZC202114) and the work also supported the Fundamental Research Funds for the Central Universities of Central South University (2020zzts065). In addition, we also thank all the colleagues and students who have contributed to our work in this area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei-Peng Jiao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Long, X., Zhao, GQ. et al. Bismuth sulfide bridged Bi2S3/sulfuretted ZnAl-LDHs heterojunctions for synergetic enhancement of photodegradation activity towards tetracycline degradation. J Mater Sci: Mater Electron 33, 871–883 (2022). https://doi.org/10.1007/s10854-021-07357-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07357-5

Navigation