Skip to main content
Log in

Poly (d,l-lactide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering and biocompatibility evaluation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Biodegradable polymer/bioceramic composite scaffolds can overcome the limitations of conventional ceramic bone substitutes such as brittleness and difficulty in shaping. However, conventional methods for fabricating polymer/bioceramic composite scaffolds often use organic solvents (e.g., the solvent casting and particulate leaching (SC/PL) method), which might be harmful to cells or tissues. In this study, Poly (d,l-lactide)/nano-hydroxyapatite (PDLLA/NHA) composites were prepared by in-situ polymerization, and highly porous scaffolds were fabricated using a novel method, supercritical CO2/salt-leaching method (SC CO2/SL). The materials and scaffolds were investigated by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM) and gel permeation chromatography (GPC). GPC showed that the molecular weight of composites decreased with increase of NHA content. However, the water absorption and compressive strength increased dramatically. The SEM micrographs showed that the scaffolds with pore size about 250 μm were obtained by controlling parameters of SC CO2/SL. The biocompatibility of PDLLA/NHA porous scaffolds were evaluated in vitro and in vivo. The evaluation on the cytotoxicity were carried out by cell relative growth rate (RGR) method and cell direct contact method. The cytotoxicity of these scaffolds was in grade I according to ISO 10993-1. There was no toxicosis and death cases observed in acute systemic toxicity test. And histological observation of the tissue response (1 and 9 weeks after the implantation) showed that there are still some slight inflammation responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. R. A. J. ROSE and R. O. C. OREFFO, Biochem. Biophys. Res. Comm. 292 (2002) 1

    Article  CAS  Google Scholar 

  2. R. F. SERVICE, Science 289 (2000) 1498

    Article  CAS  Google Scholar 

  3. J. R. JONES and L. L. HENCH, Mater. Sci. Technol. 17 (2001) 891

    CAS  Google Scholar 

  4. R. LANGER and J. P. VACANTI, Tissue Eng. Sci. 260 (1993) 920

    CAS  Google Scholar 

  5. Y. TABATA, Drug Discov. Today 6 (2001) 483

    Article  CAS  Google Scholar 

  6. A. DENUZIERE, D. FERRIER, O. DAMOUR et al., Biomaterials 19 (1998) 1275

    Article  CAS  Google Scholar 

  7. R. K. KULKARNI, K. C. PANI, C. NEUMAN et al., Arch. Surg. 93 (1966) 839

    CAS  Google Scholar 

  8. D. E. CUTRIGHT and E. E. HUNSUCK, Oral Surg. Oral Med. Oral Pathol. 31 (1971) 134

    Article  CAS  Google Scholar 

  9. A. MAJOLA, S. VAINIONAPAA, K. VIHTONEN et al., Clin. Orthop. Relat. Res. 268 (1991) 260

    Google Scholar 

  10. S. L. SHAUG, G. M. CRANE, M. J. MILLER et al., J. Biomed. Mater. Res. 36 (1997) 17

    Article  Google Scholar 

  11. T. B. REN, J. REN, K. F. PAN et al., J. Biomed. Mater. Res. Part A. 74 (2005) 562

    Article  CAS  Google Scholar 

  12. L. G. GRIFFITH, Acta. Mater. 48 (2000) 263

    Article  CAS  Google Scholar 

  13. C. M. AGRAWAL and R. B. RAY, J. Biomed. Mater. Res. 55 (2001) 141

    Article  CAS  Google Scholar 

  14. Y. SHIKINAMI and M. OKUNO, Biomaterials 20 (1999) 859

    Article  CAS  Google Scholar 

  15. L. L. HENCH, J. Am. Ceram. Soc. 81 (1998) 1705

    Article  CAS  Google Scholar 

  16. P. SEPULVEDA, J. R. JONES and L. L. HENCH, J. Biomed. Mater. Res. 61 (2002) 301

    Article  CAS  Google Scholar 

  17. A. R. BOCCACCINI, J. A. ROETHER and L. L. HENCH et al., Ceram. Eng. Sci. Proc. 23 (2002) 805

    Article  CAS  Google Scholar 

  18. C. T. LAURENCIN, H. H. LU, In Bone Engineering, edited by J. E. Davies, (Toronto, Canada: Em Squared Incorporated 2000), p. 462

  19. A. G. MIKOS, L. A. THORSEN, L. A. CZERWONKA, Y. BAO and R. LANGER, Polymer 35 (1994) 1068

    Article  CAS  Google Scholar 

  20. H. LO, M. S. PONTICIELLO and K. W. LEONG, Tissue Eng. 1 (1995) 15

    Article  CAS  Google Scholar 

  21. L. E. FREED, G. VUNJAK-NOVAKOVIC, R. J. BIRON, D. B. EAGLES, D. C. LESNOY, S. K. BARLOW and R. LANGER, Bio/Technology 12 (1994) 689

    Article  CAS  Google Scholar 

  22. J. J. YOON and T. G. PARK, J. Biomed. Mater. Res. 55 (2001) 401

    Article  CAS  Google Scholar 

  23. Y. S. NAM and J. J. YOON, J. Biomed. Mater. Res. 53 (2000) 1

    Article  CAS  Google Scholar 

  24. L. SINGH and V. KUMAR, Biomaterials. 25 (2004) 2611

    Article  CAS  Google Scholar 

  25. D. J. MOONEY, D. F. BALDWIN, N. P. SUH, J. P. VACANTI and R. LANGER, Biomaterials. 17 (1996) 1417

    Article  CAS  Google Scholar 

  26. L. D. HARRIS, B. S. KIM and J. M. DAVID, J. Biomed. Mater. Res. 42 (1998) 396

    Article  CAS  Google Scholar 

  27. Q. XU, X. REN, Y. CHANG, J. WANG, L. YU and D. KATHERINE, J. Appl. Polym. Sci. 94 (2004) 593

    Article  CAS  Google Scholar 

  28. J. WANG, X. G. CHENG, M. J. YUAN and J. S. HE, Polymer 42 (2001) 8265

    Article  CAS  Google Scholar 

  29. D. D. HILE and M. LEE, J. Control. Rel. 66 (2000) 177

    Article  CAS  Google Scholar 

  30. J. S. CHIOU, J. W. BARLOW and D. R. PAUL, J. Appl. Polym. Sci. 30 (1985) 2633

    Article  CAS  Google Scholar 

  31. S. K. GOEL and E. J. BECKMAN, Polymer 34 (1993) 1410

    Article  CAS  Google Scholar 

  32. M. H. SHERIDAN, L. D. SHEA, M. C. PETERS and D. J. MOONEY, J. Control Rel. 64 (2000) 91

    Article  CAS  Google Scholar 

  33. Y. X. LIU and C. U. J. PITTMAN, J. Polym. Sci. Part A: Polym. Chem. 35 (1997) 3655

    Article  CAS  Google Scholar 

  34. L. F. CAI, X. B. HUANG, M. Z. RONG, W. H. RUAN and M. Q. ZHANG, Polymer 47 (2006) 7043

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project is sponsored by the key basic research foundation for development of science and technology of Shanghai, P.R. of China (Number: 05DJ14006), the research foundation for nano science and technology special project of Shanghai (Number: 0452nm088). Contract grant sponsor: Key Basic Research Foundation for Development of Science and Technology of Shanghai, P.R. of China; contract grant number: 05DJ14006. The research foundation for nano science and technology special project of Shanghai P.R. of China; contract grant number: 0452nm088.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, J., Zhao, P., Ren, T. et al. Poly (d,l-lactide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering and biocompatibility evaluation. J Mater Sci: Mater Med 19, 1075–1082 (2008). https://doi.org/10.1007/s10856-007-3181-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3181-8

Keywords

Navigation