Skip to main content

Advertisement

Log in

Freeze extrusion fabrication of 13–93 bioactive glass scaffolds for bone repair

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A solid freeform fabrication technique, freeze extrusion fabrication (FEF), was investigated for the creation of three-dimensional bioactive glass (13–93) scaffolds with pre-designed porosity and pore architecture. An aqueous mixture of bioactive glass particles and polymeric additives with a paste-like consistency was extruded through a narrow nozzle, and deposited layer-by-layer in a cold environment according to a computer-aided design (CAD) file. Following sublimation of the ice in a freeze dryer, the construct was heated according to a controlled schedule to burn out the polymeric additives (below ~500°C), and to densify the glass phase at higher temperature (1 h at 700°C). The sintered scaffolds had a grid-like microstructure of interconnected pores, with a porosity of ~50%, pore width of ~300 μm, and dense glass filaments (struts) with a diameter or width of ~300 μm. The scaffolds showed an elastic response during mechanical testing in compression, with an average compressive strength of 140 MPa and an elastic modulus of 5–6 GPa, comparable to the values for human cortical bone. These bioactive glass scaffolds created by the FEF method could have potential application in the repair of load-bearing bones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wolff J. The law of bone remodeling, translated from the 1982 original Das Gesetz der Transformation der Knochen, by P. Maquet and R. Furlong. Springer Verlag: Berlin, Heidelberg, New York; 1986.

  2. Woesz A. Rapid prototyping to produce porous scaffolds with controlled architecture for possible use in bone tissue engineering. In: Bidanda B, Bártolo P, editors. Virtual prototyping and bio manufacturing in medical applications. New York: Springer; 2008. p. 171–206.

    Chapter  Google Scholar 

  3. Mikhael MM. Failure of metal-on-metal total hip arthroplasty mimicking hip infection. J Bone Joint Surg. 2009;91-A:443–6.

    Article  Google Scholar 

  4. Pandit H, Glyn-jones S, McLardy-Smith P, Gundle R, Whitwell D, Gibbons CLM, Ostlere S, Athanasou N, Gill HS, Murray DW. Pseudotumours associated with metal-on-metal hip resurfacings. J Bone Joint Surg Br. 2008;90B:847–51.

    Google Scholar 

  5. Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem. 1997;121:317–24.

    CAS  Google Scholar 

  6. Rezwan K, Chen QZ, Blaker JJ, Boccaccinni AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–31.

    Article  CAS  Google Scholar 

  7. Guarino V, Causa F, Ambrosio L. Bioactive scaffolds for bone and ligament tissue. Expert Rev Med Devices. 2007;4:405–18.

    Article  CAS  Google Scholar 

  8. Ma PX. Scaffolds for tissue fabrication. Mater Today. 2004;7:30–40.

    Article  CAS  Google Scholar 

  9. Chen Q, Roether JA, Boccaccinni AR. Tissue engineering scaffolds from bioactive glass and composite materials. Topics Tissue Eng. 2008;4:1–27.

    Google Scholar 

  10. Bergsma EJ, Rozema FR, Bos RRM, Debruijn WC. Foreign body reaction to resorbable poly(l-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. J Oral Maxillofac Surg. 1993;51:666–70.

    Article  CAS  Google Scholar 

  11. Martin C, Winet H, Bao JY. Acidity near eroding polylactide–polyglycolide in vitro and in vivo in rabbit tibia bone chambers. Biomaterials. 1996;17:2373–80.

    Article  CAS  Google Scholar 

  12. Hench LL, Polak JM, Buttery Lee DK, Xynos ID, Maroothynaden J. Use of bioactive glass composites to stimulate osteoblast production. US Patent No. 0009598A1; Jan 2004

  13. Hench LL, Polak JM. Third-generation biomaterials. Science. 2002;295:1014–7.

    Article  CAS  Google Scholar 

  14. Fu Q, Rahaman MN, Bal SB, Brown RF, Day DE. Mechanical and in vitro performance of 13–93 bioglass scaffolds prepared by polymer foam replication technique. Acta Biomater. 2008;4:1854–64.

    Article  CAS  Google Scholar 

  15. Fu Q, Rahaman MN, Bal SB, Brown RF. Preparation and in vitro evaluation of bioactive glass (13–93) scaffolds with oriented microstructures for repair and regeneration of load-bearing bones. J Biomed Mater Res Part A. 2010;93A:1380–90.

    CAS  Google Scholar 

  16. Sepulveda P, Jones JR, Hench LL. Bioactive sol–gel foams for tissue repair. J Biomed Mater Res. 2002;59:340–8.

    Article  CAS  Google Scholar 

  17. Ma PX, Choi JW. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng. 2001;7:23–33.

    Article  CAS  Google Scholar 

  18. Lu HH, El-Amin SF, Scott KD, Laurencin CT. Three dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J Biomed Mater Res Part A. 2003;64:465–74.

    Article  Google Scholar 

  19. Cesarano J, Calvert PD. Freeforming objects with low-binder slurry. US Patent Number 6027326; Feb 2000

  20. Smay JE, Gratson GM, Shepherd RF, Cesarano J, Lewis JA. Directed colloidal assembly of 3D periodic structures. Adv Mater. 2002;14:1279–83.

    Article  CAS  Google Scholar 

  21. Smay JE, Cesarano J, Lewis JA. Colloidal inks for directed assembly of 3D periodic structures. Langmuir. 2002;18:5429–37.

    Article  CAS  Google Scholar 

  22. Michna S, Willie W, Lewis JA. Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials. 2005;26:5632–9.

    Article  CAS  Google Scholar 

  23. Miranda P, Saiz E, Gryn K, Tomsia AP. Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopedic applications. Acta Biomater. 2006;2:457–66.

    Article  Google Scholar 

  24. Russias J, Saiz E, Deville S, Gryn K, Liu G, Nalla RK, Tomsia AP. Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting. J Biomed Mater Res Part A. 2007;83A:434–45.

    Article  CAS  Google Scholar 

  25. Hollinger JO, Leong K. Poly(alpha-hydroxy acids): carriers for bone morphogenetic proteins. Biomaterials. 1996;17:187–94.

    Article  CAS  Google Scholar 

  26. Hu YH, Grainger DW, Winn SR, Hollinger JO. Fabrication of poly(-hydroxy acid) foam scaffolds using multiple solvent systems. J Biomed Mater Res. 2002;59:563–72.

    Article  CAS  Google Scholar 

  27. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.

    Article  CAS  Google Scholar 

  28. Burg KJL, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21:2347–59.

    Article  CAS  Google Scholar 

  29. Deville S, Saiz E, Tomsia AP. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials. 2006;27:5480–9.

    Article  CAS  Google Scholar 

  30. Fung YC. Biomechanics mechanical properties of living tissues. New York: Springer; 1993. p. 500.

    Google Scholar 

  31. Keaveny TM, Hayes WC. Mechanical properties of cortical bone and trabecular bone. In: Hall BK, editor. Bone growth. Boca Racon, FL: CRC press; 1993. p. 285–344.

    Google Scholar 

  32. Rho J-Y. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20:92–102.

    Article  CAS  Google Scholar 

  33. Russias J, Saiz E, Deville S, Gryn K, Liu G, Nalla RK, Tomsia AP. Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting. J Biomed Mater Res Part A. 2007;83A:434–45.

    Article  CAS  Google Scholar 

  34. Cowin SC. Bone mechanics handbook. 2nd ed. London UK: Informa Healthcare; 2001. p. 101–1023.

    Google Scholar 

  35. Miranda P, Pajares A, Saiz E, Tomsia AP, Guiberteau F. Fracture modes under uniaxial compression in hydroxyapatite scaffolds fabricated by robocasting. J Biomed Mater Res, Part B Appl Biomater. 2007;83A:646–55.

    Article  CAS  Google Scholar 

  36. Miranda P, Pajares A, Saiz E, Tomsia AP, Guiberteau F. Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. J Biomed Mater Res Part A. 2008;85A:218–27.

    Article  CAS  Google Scholar 

  37. Lorrison JC, Goodridge RD, Dalgarno KW, Wood DJ. Selective laser sintering of bioactive glass-ceramics, Solid Freeform Fabrication Proceedings. University of Texas at Austin; 2002, pp. 1–8

  38. Lorrison JC, Dalgarno KW, Wood DJ. Processing of an apatite-mullite glass-ceramic and an hydroxyapatite/phosphate glass composite by selective laser sintering. J Mater Sci Mater Med. 2005;16:775–81.

    Article  CAS  Google Scholar 

  39. Goodridge RD, Dalgarno KW, Wood DJ. Indirect selective laser sintering of an apatite-mullite glass-ceramic for potential use in bone replacement applications. PhD thesis, University of Leeds, UK; 2005

  40. Roodridgee RD, Wood DJ, Ohtsuki C, Dalgarno KW. Biological evaluation of an apatite-mullite glass-ceramic produced via selective laser sintering. Acta Biomater. 2006;3:221–31.

    Article  Google Scholar 

  41. Fu Q, Rahaman MN, Day DE. Accelerated conversion of silicate bioactive glass (13–93) to hydroxyapatite in aqueous phosphate solution containing polyanions. J Am Ceram Soc. 2009;92:2870–6.

    Article  CAS  Google Scholar 

  42. Brown RF, Day DE, Day TE, Jung S, Rahaman MN, Fu Q. Growth and differentiation of osteoblastic cells on 13–93 bioactive glass fibers and scaffolds. Acta Biomater. 2008;4:387–96.

    Article  CAS  Google Scholar 

  43. Fu Q, Rahaman MN, Bal BS, Huang W, Day DE. Preparation and bioactive characteristics of a porous 13–93 glass, and fabrication into the articulating surface of a proximal tibia. J Biomed Mater Res Part A. 2007;82A:222–9.

    Article  CAS  Google Scholar 

  44. Pirhonen E, Moimas L, Haapanen J. Porous bioactive 3-D glass fiber scaffolds for tissue engineering applications manufactured by sintering technique. Key Eng Mater. 2003;240–242:237–40.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support for this research by the Center for Bone Tissue Repair and Regeneration at Missouri University of Science and Technology. The bioactive glass (13–93) used in this work was kindly provided by Mo-Sci Corp., Rolla, Missouri.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming C. Leu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doiphode, N.D., Huang, T., Leu, M.C. et al. Freeze extrusion fabrication of 13–93 bioactive glass scaffolds for bone repair. J Mater Sci: Mater Med 22, 515–523 (2011). https://doi.org/10.1007/s10856-011-4236-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4236-4

Keywords

Navigation