Skip to main content
Log in

Tenocyte proliferation on collagen scaffolds protects against degradation and improves scaffold properties

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Tissue engineering scaffolds encourage cell proliferation whilst degrading to facilitate tissue regeneration. Their mechanical properties therefore change, decreasing due to scaffold degradation and increasing due to extracellular matrix deposition. This work compares the changing properties of collagen scaffolds incubated in culture medium, with and without human tenocytes, in order to investigate the relationship between degradation and tenocyte proliferation. The material properties of scaffolds are compared over 26 days using mechanical testing, differential scanning calorimetry, infra-red spectroscopy, and histology and biochemical assays. For medium-only scaffolds, the mechanical properties decrease rapidly, while culture medium sulfhydryl content increases significantly, with no significant changes in the denaturation temperature of scaffold collagen content. Conversely, the mechanical properties and collagen content of tenocyte-seeded scaffolds increase significantly while culture medium sulfhydryl content decreases and denaturation temperature remains the same. These results indicate that tenocytes proliferation both reduces the degradation of collagen scaffolds incubated in culture medium and produces scaffolds with improved properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cummins CA, Murrell GAC. Mode of failure for rotator cuff repair with suture anchors identified at revision surgery. J Should Elbow Surg. 2003;12(2):128–33.

    Article  Google Scholar 

  2. Mura N, O’Driscoll SW, Zobitz ME, Heers G, An KN. Biomechanical effect of patch graft for large rotator cuff tears: a cadaver study. Clin Orthop Relat Res. 2003;415:131–8.

    Article  Google Scholar 

  3. Gerber C, Fuchs B, Hodler J. The results of repair of massive tears of the rotator cuff. J Bone Joint Surg. 2000;82(4):505–15.

    CAS  Google Scholar 

  4. Sachlos E, Reis N, Ainsley C, Derby B, Czernuszka JT. Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials. 2003;24(8):1487–97.

    Article  CAS  Google Scholar 

  5. Sengers BG, Taylor M, Please CP, Oreffo ROC. Computational modelling of cell spreading and tissue regeneration in porous scaffolds. Biomaterials. 2007;28(10):1926–40.

    Article  CAS  Google Scholar 

  6. Göpferich A. Mechanisms of polymer degradation and erosion. Polym Scaffold Hard Tissue Eng. 1996;17(2):103–14.

    Google Scholar 

  7. Chao G, Xiaobo S, Chenglin C, Yinsheng D, Yuepu P, Pinghua L. A cellular automaton simulation of the degradation of porous polylactide scaffold: I Effect of porosity. Mater Sci Eng C. 2009;29(6):1950–8.

    Article  Google Scholar 

  8. Agrawal CM, McKinney JS, Lanctot D, Athanasiou KA. Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering. Biomaterials. 2000;21(23):2443–52.

    Article  CAS  Google Scholar 

  9. Gong Y, Zhou Q, Gao C, Shen J. In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method. Acta Biomater. 2007;3(4):531–40.

    Article  CAS  Google Scholar 

  10. Leenslag JW, Pennings AJ, Bos RRM, Rozema FR, Boering G. Resorbable materials of poly(l-lactide): VII In vivo and in vitro degradation. Biomaterials. 1987;8(4):311–4.

    Article  CAS  Google Scholar 

  11. Yahyouche A, Zhidao X, Czernuszka JT, Clover AJP. Macrophage-mediated degradation of crosslinked collagen scaffolds. Acta Biomater. 2011;7(1):278–86.

    Article  CAS  Google Scholar 

  12. Shea KP, McCarthy MB, Ledgard F, Arciero C, Chowaniec D, Mazzocca AD. Human tendon cell response to 7 commercially available extracellular matrix materials: an in vitro study arthroscopy. J Arthrosc Relat Surg. 2010;26(9):1181–8.

    Article  Google Scholar 

  13. Stoll C, John T, Endres M, Rosen C, Kaps C, Kohl B et al. Extracellular matrix expression of human tenocytes in three-dimensional air–liquid and PLGA cultures compared with tendon tissue: Implications for tendon tissue engineering. J Orthop Res. 2010;28(9):1170–7. doi:10.1002/jor.21109.

    Google Scholar 

  14. Charulatha V, Rajaram A. Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials. 2003;24(5):759–67.

    Article  CAS  Google Scholar 

  15. Oliveira SM, Ringshia RA, Legeros RZ, Clark E, Yost MJ, Terracio L et al. An improved collagen scaffold for skeletal regeneration. J Biomed Mater Res A. 2010 (Early View).

  16. Haugh MG, Murphy CM, McKiernan RC, Altenbuchner C, O’Brien FJ. Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds. Tissue Eng A. 2010;17(9–10):1201–8. doi:10.1089/ten.tea.2010.0590.

  17. Cao D, Liu W, Wei X, Xu F, Cui L, Cao Y. In vitro tendon engineering with avian tenocytes and polyglycolic acids: a preliminary report. Tissue Eng. 2006;12(5):1369–77.

    Article  CAS  Google Scholar 

  18. Ge Z, Yang F, Goh JCH, Ramakrishna S, Lee EH. Biomaterials and scaffolds for ligament tissue engineering. J Biomed Mater Res A. 2006;77A(3):639–52.

    Article  CAS  Google Scholar 

  19. Chen G, Liu D, Maruyama N, Ohgushi H, Tanaka J, Tateishi T. Cell adhesion of bone marrow cells, chondrocytes, ligament cells and synovial cells on a PLGA-collagen hybrid mesh. Mater Sci Eng C. 2004;24(6–8):867–73.

    Article  Google Scholar 

  20. Powell HM, Boyce ST. EDC cross-linking improves skin substitute strength and stability. Biomaterials 2006;27(34):5821–7.

    Google Scholar 

  21. Willows A, Fan Q, Ismail F, Vaz CM, Tomlins PE, Mikhalovska LI, et al. Assessment of tissue scaffold degradation using electrochemical techniques. Acta Biomater. 2008;4(3):686–96.

    Article  CAS  Google Scholar 

  22. Pek YS, Spector M, Yannas IV, Gibson LJ. Degradation of a collagen–chondroitin-6-sulfate matrix by collagenase and by chondroitinase. Biomaterials. 2004;25(3):473–82.

    Article  CAS  Google Scholar 

  23. Olde Damink LHH, Dijkstra PJ, van Luyn MJA, van Wachem PB, Nieuwenhuis P, Feijen J. In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide. Biomaterials. 1996;17(7):679–84.

    Article  CAS  Google Scholar 

  24. Wolfgang F. Collagen—biomaterial for drug delivery. Eur J Pharm Biopharm. 1998;45(2):113–36.

    Article  Google Scholar 

  25. Kato YP, Dunn MG, Zawadsky JP, Tria AJ, Silver FH. Regeneration of Achilles tendon with a collagen tendon prosthesis. Results of a one-year implantation study. J Bone Joint Surg. 1991;73(4):561–74.

    CAS  Google Scholar 

  26. Goldstein JD, Tria AJ, Zawadsky JP, Kato YP, Christiansen D, Silver FH. Development of a reconstituted collagen tendon prosthesis A preliminary implantation study. J Bone Joint Surg. 1989;71(8):1183–91.

    CAS  Google Scholar 

  27. Lamberti PM, Wezeman FH. Biologic behavior of an in vitro hydrated collagen gel–human tenocyte tendon model. Clin Orthop Relat Res. 2002;397:414–23.

    Article  Google Scholar 

  28. Grinnell F, Lamke CR. Reorganization of hydrated collagen lattices by human skin fibroblasts. J Cell Sci. 1984;66(1):51–63.

    CAS  Google Scholar 

  29. Gigante A, Cesari E, Busilacchi A, Manzotti S, Kyriakidou K, Greco F et al. Collagen I membranes for tendon repair: Effect of collagen fiber orientation on cell behavior. J Orthop Res. 2009;27(6):826–32. doi:10.1002/jor.20812.

    Google Scholar 

  30. Byth H-A, Mchunu BI, Dubery IA, Bornman L. Assessment of a simple, non-toxic alamar blue cell survival assay to monitor tomato cell viability. Phytochem Anal. 2001;12(5):340–6.

    Article  CAS  Google Scholar 

  31. Graham CE, Waitkoff HK, Hier SW. The amino acid content of some scleroproteins. J Biol Chem. 1949;177(2):529–32.

    CAS  Google Scholar 

  32. Moore SM, McMahon PJ, Azemi E, Debski RE. Bi-directional mechanical properties of the posterior region of the glenohumeral capsule. J Biomech. 2005;38(6):1365–9.

    Article  Google Scholar 

  33. Kato YP, Christiansen DL, Hahn RA, Shieh S-J, Goldstein JD, Silver FH. Mechanical properties of collagen fibres: a comparison of reconstituted and rat tail tendon fibres. Biomaterials. 1989;10(1):38–42.

    Article  CAS  Google Scholar 

  34. Bigi A, Cojazzi G, Roveri N, Koch MHJ. Differential scanning calorimetry and X-ray diffraction study of tendon collagen thermal denaturation. Int J Biol Macromol. 1987;9(6):363–7.

    Article  CAS  Google Scholar 

  35. Martini FH. Fundamentals of anatomy and physiology. 4th ed. Upper Saddle River, NJ: Prentice Hall, Inc.; 1998.

    Google Scholar 

  36. Vernon RB, Gooden MD. An improved method for the collagen gel contraction assay. In Vitro Cell Dev Biol Anim. 2002;38(2):97–101. doi:10.1290/1071-2690(2002)038<0097:aimftc>2.0.co;2.

    Article  CAS  Google Scholar 

  37. Schulz Torres DM, Freyman T, Yannas IV, Spector M. Tendon cell contraction of collagen—GAG matrices in vitro: effect of cross-linking. Biomaterials. 2000;21(15):1607–19.

    Article  Google Scholar 

  38. Gough KM, Zelinski D, Wiens R, Rak M, Dixon IMC. Fourier transform infrared evaluation of microscopic scarring in the cardiomyopathic heart: effect of chronic AT1 suppression. Anal Biochem. 2003;316(2):232–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is funded by a doctoral training scholarship from the Engineering and Physical Sciences Research Council and supported by the National Institute for Health Research Biomedical Research Unit. The authors would like to thank Dr. P. Hulley and A. Yahyouche for their technical assistance and Professor Chris Grovenor for provision of laboratory facilities.

Conflict of interest

The authors of this work declare that they do not have any conflicts of interest, financial or personal, that could inappropriately influence this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. R. Tilley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tilley, J.M.R., Chaudhury, S., Hakimi, O. et al. Tenocyte proliferation on collagen scaffolds protects against degradation and improves scaffold properties. J Mater Sci: Mater Med 23, 823–833 (2012). https://doi.org/10.1007/s10856-011-4537-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4537-7

Keywords

Navigation