Skip to main content

Advertisement

Log in

Processing and characterization of innovative scaffolds for bone tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A new protocol, based on a modified replication method, is proposed to obtain bioactive glass scaffolds. The main feature of these samples, named “shell scaffolds”, is their external surface that, like a compact and porous shell, provides both high permeability to fluids and mechanical support. In this work, two different scaffolds were prepared using the following slurry components: 59 % water, 29 % 45S5 Bioglass® and 12 % polyvinylic binder and 51 % water, 34 % 45S5 Bioglass®, 10 % polyvinylic binder and 5 % polyethylene. All the proposed samples were characterized by a widespread microporosity and an interconnected macroporosity, with a total porosity of 80 % vol. After immersion in a simulated body fluid (SBF), the scaffolds showed strong ability to develop hydroxyapatite, enhanced by the high specific surface of the porous systems. Moreover preliminary biological evaluations suggested a promising role of the shell scaffolds for applications in bone tissue regeneration. As regards the mechanical behaviour, the shell scaffolds could be easily handled without damages, due to their resistant external surface. More specifically, they possessed suitable mechanical properties for bone regeneration, as proved by compression tests performed before and after immersion in SBF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ma PX. Scaffolds for tissue fabrication. Mater Today. 2004;7(5):30–40.

    Article  CAS  Google Scholar 

  2. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;5:518–24.

    Article  Google Scholar 

  3. Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004;44:743–65.

    Article  Google Scholar 

  4. Berthiaume F, Yarmush ML. In: Bronzino JD, editor. The biomedical engineering handbook. Boca Raton, CRC Press LLC; 2000. p. 109–111.

  5. Takezawa T. A strategy for the development of tissue engineering scaffolds that regulate cell behaviour. Biomaterials. 2003;24:2267–75.

    Article  CAS  Google Scholar 

  6. Freyman TM, Yannas IV, Gibson LJ. Cellular materials as porous scaffolds for tissue engineering. Prog Mater Sci. 2001;46:273–82.

    Article  CAS  Google Scholar 

  7. Yaszemski MJ, Oldham JB, Lu L, Currier BL. Clinical needs for bone tissue engineering technology. In: Davis JE, editor. Bone engineering. Toronto: Em Squared; 2000. p. 541–7.

    Google Scholar 

  8. Ratner BD. Biomaterials science: an introduction to materials in medicine. 2nd ed. Academic Press; 2004.

  9. Petite H, Viateau V, Bensaïd W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G. Tissue-engineered bone regeneration. Nat Biotechnol. 2000;18:959–63.

    Article  CAS  Google Scholar 

  10. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–31.

    Article  CAS  Google Scholar 

  11. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.

    Article  CAS  Google Scholar 

  12. Hench LL. Genetic design of bioactive glass. J Eur Ceram Soc. 2009;29:1257–65.

    Article  CAS  Google Scholar 

  13. Hench LL. Bioceramics. From concept to clinic. J Am Ceram Soc. 1991;74(7):1487–510.

    Article  CAS  Google Scholar 

  14. Kim CY, Clark AE, Hench LL. Early stages of calcium-phosphate layer formation in bioglasses. J Non-Cryst Solids. 1989;113:195–202.

    Article  CAS  Google Scholar 

  15. Landi E, Celotti G, Logroscino G, Tampieri A. Carbonated hydroxyapatite as bone substitute. J Eur Ceram Soc. 2003;23:2931–7.

    Article  CAS  Google Scholar 

  16. Bohner M, van Lenthe GH, Grünenfelder S, Hirsiger W, Evison R, Müller R. Synthesis and characterization of porous β-tricalcium phosphate blocks. Biomaterials. 2005;26:6099–105.

    Article  CAS  Google Scholar 

  17. Kokubo T. Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Mater. 1998;46(7):2519–27.

    Article  CAS  Google Scholar 

  18. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp. 1971;2(Part I):117–41.

    Article  Google Scholar 

  19. Hench LL, Wilson J, Merwin G. Bioglass: implants for otology. In: Grote JJ, editor. Biomaterials in otology. The Hague: Martinus Nijhoff Publisher; 1983. p. 62–9.

    Google Scholar 

  20. Day RM. Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng. 2005;11(5–6):768–77.

    Article  CAS  Google Scholar 

  21. Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27:2414–25.

    Article  CAS  Google Scholar 

  22. Clupper DC, Hench LL. Crystallization kinetics of tape cast bioactive glass 45S5. J Non-Cryst Solids. 2003;318:43–8.

    Article  CAS  Google Scholar 

  23. Chen QZ, Rezwan K, Françon V, Armitage D, Nazhat SN, Jones FH, Boccaccini AR. Surface functionalization of Bioglass®-derived porous scaffolds. Acta Biomater. 2007;3:551–62.

    Article  CAS  Google Scholar 

  24. Filho OP, LaTorre GP, Hench LL. Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res. 1996;30:509–14.

    Article  Google Scholar 

  25. Boccaccini AR, Chen QZ, Lefebvre L, Gremillard L, Chevalier J. Sintering, crystallization and biodegradation behaviour of Bioglass®-derived glass-ceramics. Faraday Discuss. 2007;136:27–44.

    Article  CAS  Google Scholar 

  26. Lefebvre L, Chevalier J, Gremillard L, Zenati R, Thollet G, Bernache-Assolant D, Govin A. Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Mater. 2007;55:3305–13.

    Article  CAS  Google Scholar 

  27. Ramay HR, Zhang M. Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomaterials. 2003;24(19):3293–302.

    Article  CAS  Google Scholar 

  28. Pereira MM, Jones JR, Hench LL. Bioactive glass and hybrid scaffold prepared by sol–gel method for bone tissue engineering. Adv Appl Ceram. 2005;104(1):35–42.

    Article  CAS  Google Scholar 

  29. Mallick KK. Freeze casting of porous bioactive glass bioceramics. J Am Ceram Soc. 2009;92(1):85–94.

    Article  Google Scholar 

  30. Vitale-Brovarone C, Baino F, Verné E. High strength bioactive glass-ceramic scaffolds for bone regeneration. J Mater Sci Mater Med. 2009;20:643–53.

    Article  CAS  Google Scholar 

  31. Bretcanu O, Samaille C, Boccaccini AR. Simple methods to fabricate Bioglass®-derived glass-ceramic scaffolds exhibiting porosity gradient. J Mater Sci Mater Med. 2008;43:4127–34.

    CAS  Google Scholar 

  32. Vitale-Brovarone C, Verné E, Robiglio L, Martinasso G, Canuto RA, Murzio G. Biocompatible glass-ceramic materials for bone substituition. J Mater Sci Mater Med. 2008;19:471–8.

    Article  CAS  Google Scholar 

  33. Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M, Thierry B. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med. 1999;10:111–20.

    Article  CAS  Google Scholar 

  34. Andrade JCT, Cavilli JA, Kawachi EY, Bertran CA. Behaviour of dense and porous hydroxyapatite implants and tissue response in rat femoral defects. J Biomed Mater Res. 2002;62:30–6.

    Article  CAS  Google Scholar 

  35. Livingston T, Ducheyne P, Garino J. In vivo evalutation of a bioactive scaffold for bone tissue engineering. J Biomed Mater Res A. 2002;62:1–13.

    Article  CAS  Google Scholar 

  36. Vitale-Brovarone C, Di Nunzio S, Bretcanu O, Verné E. Macroporous glass-ceramic materials with bioactive properties. J Mater Sci Mater Med. 2004;15:209–17.

    Article  CAS  Google Scholar 

  37. Bellucci D, Cannillo V, Sola A. Shell scaffolds: a new approach towards high strength bioceramic scaffolds for bone regeneration. Mater Lett. 2010;64:203–6.

    Article  CAS  Google Scholar 

  38. Varanasi VG, Saiz E, Loomer PM, Ancheta B, Uritani N, Ho SP, Tomsia AP, Marshall SJ, Marshall GW. Enhanced osteocalcin expression by osteoblast-like cells (MC-3T3-E1) exposed to bioactive coating glass (SiO2–CaO–P2O2–MgO–Na2O system) ions. Acta Biomater. 2009;5:3536–47.

    Article  CAS  Google Scholar 

  39. Lopez-Esteban S, Saiz E, Fujino S, Oku T, Suganuma K, Tomsia AP. Bioactive glass coatings for orthopaedic metallic implants. J Eur Ceram Soc. 2003;23:2923–30.

    Article  Google Scholar 

  40. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  41. Chen QZ, Efthymiou A, Salih V, Boccaccini AR. Bioglass®-derived glass-ceramic scaffolds: study of cell proliferation and scaffold degradation in vitro. J Biomed Mater Res A. 2008;84:1049–60.

    CAS  Google Scholar 

  42. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass ceramic A-W. J Biomed Mater Res. 1990;24:721–34.

    Article  CAS  Google Scholar 

  43. Chiellini F. Perspectives on: in vitro evaluation of biomedical polymers. J Bioact Compat Pol. 2006;21(3):257–71.

    Article  CAS  Google Scholar 

  44. Lefebvre L, Gremillard L, Chevalier J, Zenati R, Bernache-Assolant D. Sintering behaviour of 45S5 bioactive glass. Acta Biomater. 2008;4:1894–903.

    Article  CAS  Google Scholar 

  45. Schwarts Z, Boyan BD. Underlying mechanisms at the bone-biomaterial interface. J Cell Biochem. 1994;56:340–7.

    Article  Google Scholar 

  46. Lin CC, Huang LC, Shen P. Na2CaSi2O6–P2O5 based bioactive glasses. Part 1: elasticity and structure. J Non-Cryst Solids. 2005;351:3195–203.

    Article  CAS  Google Scholar 

  47. Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials. 2009;30:2175–9.

    Article  CAS  Google Scholar 

  48. Zhang D, Hupa M, Aro HT, Hupa L. Influence of fluid circulation on in vitro reactivity of bioactive glass particles. Mater Chem Phys. 2008;111:497–502.

    Article  CAS  Google Scholar 

  49. Liu H, Yazici H, Ergun C, Webster TJ, Bermek H. An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration. Acta Biomater. 2008;4:1472–9.

    Article  CAS  Google Scholar 

  50. Silver IA, Deas J, Erecinska M. Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass®, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability. Biomaterials. 2000;22:175–85.

    Article  Google Scholar 

  51. Bellucci D, Cannillo V, Sola A, Chiellini F, Gazzarri M, Migone C. Macroporous Bioglass®-derived scaffolds for bone tissue regeneration. Ceram Int. 2011;37:1575–85.

    Article  CAS  Google Scholar 

  52. Bellucci D, Cannillo V, Ciardelli G, Gentile P, Sola A. Potassium based bioactive glass for bone tissue engineering. Ceram Int. 2010;36:2449–53.

    Article  CAS  Google Scholar 

  53. Callcut S, Knowles JC. Correlation between structure and compressive strength in a reticulate glass-reinforced hydroxyapatite foam. J Mater Sci Mater Med. 2002;13:485–9.

    Article  CAS  Google Scholar 

  54. Kim HW, Knowles JC, Kim HE. Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic vancomycin release. J Mater Sci Mater Med. 2005;16:189–95.

    Article  Google Scholar 

  55. Miao X, Lim G, Loh KH, Boccaccini AR. Preparation and characterisation of calcium phosphate bone cement. Mater Proc Prop Perf (MP3). 2004;3:319–24.

    Google Scholar 

  56. Gibson LJ, Ashby MF. Cellular solids: structure and properties. 2nd ed. Oxford: Pergamon; 1999. p. 429–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bellucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellucci, D., Chiellini, F., Ciardelli, G. et al. Processing and characterization of innovative scaffolds for bone tissue engineering. J Mater Sci: Mater Med 23, 1397–1409 (2012). https://doi.org/10.1007/s10856-012-4622-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4622-6

Keywords

Navigation