Skip to main content

Advertisement

Log in

Magnesium- and strontium-co-substituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The present study is aimed at investigating the contribution of two biologically important cations, Mg2+ and Sr2+, when substituted into the structure of hydroxyapatite (Ca10(PO4)6(OH)2,HA). The substituted samples were synthesized by an aqueous precipitation method that involved the addition of Mg2+- and Sr2+-containing precursors to partially replace Ca2+ ions in the apatite structure. Eight substituted HA samples with different concentrations of single (only Mg2+) or combined (Mg2+ and Sr2+) substitution of cations have been investigated and the results compared with those of pure HA. The obtained materials were characterized by X-ray powder diffraction, specific surface area and porosity measurements (N2 adsorption at 77 K), FT-IR and Raman spectroscopies and scanning electron microscopy. The results indicate that the co-substitution gives rise to the formation of HA and β-TCP structure types, with a variation of their cell parameters and of the crystallinity degree of HA with varying levels of substitution. An evaluation of the amount of substituents allows us to design and prepare BCP composite materials with a desired HA/β-TCP ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Qi G, Zhang S, Khor KA, Lye SW, Zeng X, Weng W, Liu C, Venkatraman SS, Ma LL. Osteoblastic cell response on magnesium-incorporated apatite coatings. Appl Surf Sci. 2008;255:304–7.

    Article  CAS  Google Scholar 

  2. LeGeros RZ. Hydroxyapatite and related materials. Boca Raton: CRC Press; 1994.

    Google Scholar 

  3. LeGeros RZ. Calcium phosphates in oral biology and medicine. Basel: Karger; 1991.

    Google Scholar 

  4. Hong Y, Fan H, Li B, Guo B, Liu M, Zhang X. Fabrication, biological effects, and medical applications of calcium phosphate nanoceramics. Mater Sci Eng Reports. 2010;70:225–42.

    Article  Google Scholar 

  5. Padilla S, Izquierdo-Barba I, Vallet-Regi M. High specific surface area in nanometric carbonated hydroxyapatite. Chem Mater. 2008;20:5942–4.

    Article  CAS  Google Scholar 

  6. Sanchez-Salcedo S, Balas F, Izquierdo-Barba I, Vallet-Regi M. In vitro structural changes in porous HA/beta-TCP scaffolds in simulated body fluid. Acta Biomater. 2009;5:2738–51.

    Article  CAS  Google Scholar 

  7. Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011;7:2769–81.

    Article  CAS  Google Scholar 

  8. Carrodeguas RG, De Aza S. alpha-Tricalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater. 2011;7:3536–46.

    Article  CAS  Google Scholar 

  9. de Lima IR, Alves GG, Soriano CA, Campaneli AP, Gasparoto TH, Ramos ES Jr, de Sena LA, Rossi AM, Granjeiro JM. Understanding the impact of divalent cation substitution on hydroxyapatite: an in vitro multiparametric study on biocompatibility. J Biomed Mater Res A. 2011;98A:351–8.

    Article  Google Scholar 

  10. Ergun C, Webster TJ, Bizios R, Doremus RH. Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure. J Biomed Mater Res. 2002;59:305–11.

    Article  CAS  Google Scholar 

  11. Lim PN, Tay BY, Chan CM, Thian ES. Synthesis and characterization of silver/silicon-cosubstituted nanohydroxyapatite. J Biomed Mater Res Part B Appl Biomater. 2012;100B:285–91.

    Article  CAS  Google Scholar 

  12. Boanini E, Gazzano M, Bigi A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010;6:1882–94.

    Article  CAS  Google Scholar 

  13. Manzano M, Lozano D, Arcos D, Portal-Nunez S, Lopez la Orden C, Esbrit P, Vallet-Regi M. Comparison of the osteoblastic activity conferred on Si-doped hydroxyapatite scaffolds by different osteostatin coatings. Acta Biomater. 2011;7:3555–62.

    Article  CAS  Google Scholar 

  14. Bertinetti L, Drouet C, Combes C, Rey C, Tampieri A, Coluccia S, Martra G. Surface characteristics of nanocrystalline apatites: effect of Mg surface enrichment on morphology, surface hydration species, and cationic environments. Langmuir. 2009;25:5647–54.

    Article  CAS  Google Scholar 

  15. Salviulo G, Bettinelli M, Russo U, Speghini A, Nodari L. Synthesis and structural characterization of Fe(3+)-doped calcium hydroxyapatites: role of precursors and synthesis method. J Mater Sci. 2011;46:910–22.

    Article  CAS  Google Scholar 

  16. Drouet C, Carayon M-T, Combes C, Rey C. Surface enrichment of biomimetic apatites with biologically-active ions Mg(2+) and Sr(2+): a preamble to the activation of bone repair materials. Mat Sci Eng C Biomimetic Supramol Syst. 2008;28:1544–50.

    Article  CAS  Google Scholar 

  17. Gibson IR, Bonfield W. Preparation and characterisation of magnesium/carbonate co-substituted hydroxyapatites. J Mater Sci Mater in Med. 2002;13:685–93.

    Article  CAS  Google Scholar 

  18. Stephen JA, Skakle JMS, Gibson IR. Synthesis of novel high silicate-substituted hydroxyapatite by Co-substitution mechanisms. Key Eng Mater. 2007;87:330–2.

    Google Scholar 

  19. Kannan S, Goetz-Neunhoeffer F, Neubauer J, Pina S, Torres PMC, Ferreira JMF. Synthesis and structural characterization of strontium- and magnesium-co-substituted beta-tricalcium phosphate. Acta Biomater. 2010;6:571–6.

    Article  CAS  Google Scholar 

  20. Laurencin D, Almora-Barrios N, de Leeuw NH, Gervais C, Bonhomme C, Mauri F, Chrzanowski W, Knowles JC, Newport RJ, Wong A, Gan Z, Smith ME. Magnesium incorporation into hydroxyapatite. Biomaterials. 2011;32:1826–37.

    Article  CAS  Google Scholar 

  21. Nielsen SP. The biological role of strontium. Bone. 2004;35:583–8.

    Article  Google Scholar 

  22. Canalis E, Hott M, Deloffre P, Tsouderos Y, Marie PJ. The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone. 1996;18:517–23.

    Article  CAS  Google Scholar 

  23. Buehler J, Chappuis P, Saffar JL, Tsouderos Y, Vignery A. Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis). Bone. 2001;29:176–9.

    Article  CAS  Google Scholar 

  24. Kolmas J, Jaklewicz A, Zima A, Bucko M, Paszkiewicz Z, Lis J, Slosarczyk A, Kolodziejski W. Incorporation of carbonate and magnesium ions into synthetic hydroxyapatite: the effect on physicochemical properties. J Mol Struct. 2011;987:40–50.

    Article  CAS  Google Scholar 

  25. Suchanek WL, Byrappa K, Shuk P, Riman RE, Janas VF, TenHuisen KS. Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method. Biomaterials. 2004;25:4647–57.

    Article  CAS  Google Scholar 

  26. Bertinetti L, Tampieri A, Landi E, Martra G, Coluccia S. Punctual investigation of surface sites of HA and magnesium-HA. J Eur Ceram Soc. 2006;26:987–91.

    Article  CAS  Google Scholar 

  27. Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S. Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behavior. J Mater Sci Mater Med. 2008;19:239–47.

    Article  CAS  Google Scholar 

  28. PCPFWIN 2.3. JCPDS International center for diffraction data, Swarthmore 2002.

  29. Landi E, Tampieri A, Celotti G, Sprio S. Densification behaviour and mechanisms of synthetic hydroxyapatites. J Eur Ceram Soc. 2000;20:2377–82.

    Article  CAS  Google Scholar 

  30. Larson A, Von Dreele R. General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 1994;86-748.

  31. Toby B. EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr. 2001;34:210–9.

    Article  CAS  Google Scholar 

  32. Sudarsanan K, Young RA. Acta Crystallogr. Sec B. 1969;25:1534–9.

    Article  CAS  Google Scholar 

  33. Dickens B, Schroeder L, Brown W. Crystallographic studies of the role of Mg as a stabilizing impurity in Ca3(PO4)2. The crystal structure of pure Ca3(PO4)2. J Solid State Chem. 1974;10:232–48.

    Article  CAS  Google Scholar 

  34. Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–19.

    Article  CAS  Google Scholar 

  35. Ren F. Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater. 2010;6:2787–96.

    Article  CAS  Google Scholar 

  36. Yasukawa A, Ouchi S, Kandori K, Ishikawa T. Preparation and characterization of magnesium-calcium hydroxyapatites. J Mater Chem. 1996;6:1401–5.

    Article  CAS  Google Scholar 

  37. Aminzadeh A. Fluorescence bands in the FT-Raman spectra of some calcium minerals. Spectrochimica Acta Part a-Mol Biomol Spectrosc. 1997;53:693–7.

    Article  Google Scholar 

  38. Silva CC, Sombra ASB. Raman spectroscopy measurements of hydroxyapatite obtained by mechanical alloying. J. Phys Chem Solids. 2004;65:1031–3.

    Article  CAS  Google Scholar 

  39. O’Donnell MD, Fredholm Y, de Rouffignac A, Hill RG. Structural analysis of a series of strontium-substituted apatites. Acta Biomater. 2008;4:1455–64.

    Article  Google Scholar 

  40. Paderni S, Terzi S, Amendola L. Major bone defect treatment with an osteoconductive bone substitute. La Chirurgia degli organi di movimento. 2009;93:89–96.

    Google Scholar 

  41. Lu X, Li S, Zhang J, Zhang Z, Lu B, Bu H, Li Y, Cheng J. Biocompatibility of HA/TCP biphasic ceramics with co-cultured human osteoblasts in vitro. J Biomed Eng. 2001;18:497–9.

    CAS  Google Scholar 

  42. Macchetta A, Turner IG, Bowen CR. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater. 2009;5:1319–27.

    Article  CAS  Google Scholar 

  43. Arinzeh TL, Tran T, McAlary J, Daculsi G. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials. 2005;26:3631–8.

    Article  CAS  Google Scholar 

  44. Yuan H, Fernandes H, Habibovic P. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci USA. 2010;107:13614–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Italian Ministry MUR (Project COFIN-2006, Prot. 2006032335_004: “Interface phenomena in silica-based nanostructured biocompatible materials contacted with biological systems”), by Regione Piemonte Italy (Project CIPE-2004: “Nanotechnologies and Nanosciences. Nanostructured materials biocompatible for biomedical applications”) and by San Paolo company Project Id: ORTO11RRT5, whose contribution is gratefully acknowledged. V.A. kindly acknowledges Regione Piemonte, Italy, for a postdoctoral fellowship. FEI acknowledges ERASMUS programme for financial support during her research study at the University of Torino.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gigliola Lusvardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aina, V., Lusvardi, G., Annaz, B. et al. Magnesium- and strontium-co-substituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties. J Mater Sci: Mater Med 23, 2867–2879 (2012). https://doi.org/10.1007/s10856-012-4767-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4767-3

Keywords

Navigation