Skip to main content
Log in

Investigation of 2D and 3D electrospun scaffolds intended for tendon repair

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) electrospun fibre mats have been investigated as fibrous sheets intended as biomaterials scaffolds for tissue repair. It is recognised that tissues are three-dimensional (3D) structures and that optimisation of the fabrication process should include both 2D and 3D scaffolds. Understanding the relative merits of the architecture of 2D and 3D scaffolds for tendon repair is required. This study investigated three different electrospun scaffolds based on poly(ε-caprolactone) fibres intended for repair of injured tendons, referred to as; 2D random sheet, 2D aligned sheet and 3D bundles. 2D aligned fibres and 3D bundles mimicked the parallel arrangement of collagen fibres in natural tendon and 3D bundles further replicated the tertiary layer of a tendon’s hierarchical configuration. 3D bundles demonstrated greatest tensile properties, being significantly stronger and stiffer than 2D aligned and 2D random fibres. All scaffolds supported adhesion and proliferation of tendon fibroblasts. Furthermore, 2D aligned sheets and 3D bundles allowed guidance of the cells into a parallel, longitudinal arrangement, which is similar to tendon cells in the native tissue. With their superior physical properties and ability to better replicate tendon tissue, the 3D electrospun scaffolds warrant greater investigation as synthetic grafts in tendon repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pintore E, Barra V, Pintore R, Maffulli N. Peroneus brevis tendon transfer in neglected tears of the Achilles tendon. J Trauma. 2001;50(1):71–8.

    Article  CAS  Google Scholar 

  2. Wilcox DK, Bohay DR, Anderson JG. Treatment of chronic achilles tendon disorders with flexor hallucis longus tendon transfer/augmentation. Foot Ankle Int. 2000;21(12):1004–10.

    CAS  Google Scholar 

  3. Mann RA, Holmes GB Jr, Seale KS, Collins DN. Chronic rupture of the Achilles tendon: a new technique of repair. J Bone Joint Surg Am. 1991;73(2):214–9.

    CAS  Google Scholar 

  4. Kew SJ, Gwynne JH, Enea D, Abu-Rub M, Pandit A, Zeugolis D, Brooks RA, Rushton N, Best SM, Cameron RE. Regeneration and repair of tendon and ligament tissue using collagen fibre biomaterials. Acta Biomater. 2011;7(9):3237–47.

    Article  CAS  Google Scholar 

  5. Schnee CL, Freese A, Weil R, Marcotte P. Analysis of harvest morbidity and radiographic outcome using autograft for anterior cervical fusion. Spine. 1997;22(19):2222–7.

    Article  CAS  Google Scholar 

  6. Williams RJ 3rd, Hyman J, Petrigliano F, Rozental T, Wickiewicz TL. Anterior cruciate ligament reconstruction with a four-strand hamstring tendon autograft. J Bone Joint Surg Am. 2004;86-A(2):225–32.

    Google Scholar 

  7. Barker JU, Drakos MC, Maak TG, Warren RF, Williams RJ 3rd, Allen AA. Effect of graft selection on the incidence of postoperative infection in anterior cruciate ligament reconstruction. Am J Sports Med. 2010;38(2):281–6.

    Article  Google Scholar 

  8. Kumbar SG, Nukavarapu SP, James R, Nair LS, Laurencin CT. Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials. 2008;29(30):4100–7.

    Article  CAS  Google Scholar 

  9. Bassi AK, Gough JE, Downes S. A novel phosphonate for the repair of critical size bone defects. J Tissue Eng Regen Med. 2011;Ahead of print.

  10. Wang H, Feng Y, Zhao H, Xiao R, Lu J, Zhang L, Guo J. Electrospun hemocompatible PU/Gelatin-Heparin nanofibre bilayer scaffolds as potential artificial blood vessels. Macromol Res. 2012;20(4):347–50.

    Article  Google Scholar 

  11. Ricotti L, Polini A, Genchi GG, Ciofani G, Iandolo D, Vazão H, Mattoli V, Ferreira L, et al. Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds. Biomed Mater. 2012;7(3):035010.

    Article  Google Scholar 

  12. Bonino CA, Efimenko K, Jeong SI, Krebs MD, Alsberg E, Khan SA. Three-dimensional electrospun alginate nanofiber mats via tailored charge repulsions. Small. 2012;8(12):1928–36.

    Article  CAS  Google Scholar 

  13. Nisbet DR, Forsythe JS, Shen W, Finkelstein DI, Horne MK. Review paper: a review of the cellular response on electrospun nanofibers for tissue engineering. J Biomater Appl. 2009;24(1):7–29.

    Article  CAS  Google Scholar 

  14. Simonet M, Driessen-Mol A, Baaijens FPT, Bouten CVC. Heart valve tissue regeneration. In: Bosworth LA, Downes S, editors. Electrospinning for tissue regeneration book. Cambridge: Woodhead Publishers; 2011. p. 202–24.

    Chapter  Google Scholar 

  15. Vaz CM, van Tuijl S, Bouten CVC, Baaijens FPT. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater. 2005;1(5):575–82.

    Article  CAS  Google Scholar 

  16. Acocella F, Brizzola S. Tracheal tissue regeneration. In: Bosworth LA, Downes S, editors. Electrospinning for tissue regeneration book. Cambridge: Woodhead Publishers; 2011. p. 242–79.

    Chapter  Google Scholar 

  17. Moffat KL, Kwei AS-P, Spalazzi JP, Doty SB, Levine WN, Lu HH. Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng A. 2009;15(1):115–26.

    Article  CAS  Google Scholar 

  18. Yin Z, Chen X, Chen JL, Shen WL, Nguyen TMH, Gao L, Ouyang HW. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials. 2010;31(8):2163–75.

    Article  CAS  Google Scholar 

  19. James R, Kumbar SG, Laurencin CT, Balian G, Chhabra AB. Tendon tissue engineering: adipose-derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems. Biomed Mater. 2011;6(2):025011.

    Article  CAS  Google Scholar 

  20. Kannus P. Structure of the tendon connective tissue. Scand J Med Sci Sports. 2000;10(6):312–20.

    Article  CAS  Google Scholar 

  21. Sharma P, Maffulli N. Basic biology of tendon injury and healing. The Surgeon. 2005;3(5):309–16.

    Article  CAS  Google Scholar 

  22. Screen HR, Lee DA, Bader DL, Shelton JC. An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. Proc Inst Mech Eng [H]. 2004;218(2):109–19.

    CAS  Google Scholar 

  23. Maffulli N, Moller HD, Evans CH. Tendon healing: can it be optimised? Br J Sports Med. 2002;36(5):315–6.

    Article  CAS  Google Scholar 

  24. Bosworth LA, Downes S. Physiochemical characterisation of degrading polycaprolactone scaffolds. Polym Degrad Stabil. 2010;95:2269–76.

    Article  CAS  Google Scholar 

  25. Mo XM, Xu CY, Kotaki M, Ramakrishna S. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials. 2004;25(10):1883–90.

    Article  CAS  Google Scholar 

  26. Taylor SE, Vaughan-Thomas A, Clements DN, Pinchbeck G, Macrory LC, Smith RKW, et al. Gene expression markers of tendon fibroblasts in normal and diseased tissue compared to monolayer and three dimensional culture systems. BMC Musculoskelet Disord. 2009;10:27.

    Article  Google Scholar 

  27. Tzezana R, Zussman E, Levenberg S. A layered ultra-porous scaffold for tissue engineering, created via a hydrospinning method. Tissue Eng C. 2008;14(4):281–8.

    Article  CAS  Google Scholar 

  28. Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26(15):2603–10.

    Article  CAS  Google Scholar 

  29. Vaquette C, Kahn C, Frochot C, Nouvel C, Six J-L, De Isla N, Luo L-H, Cooper-White J, Rahouadj R, Wang X. Aligned poly(l-lactic-co-e-caprolactone) electrospun microfibers and knitted structure: a novel composite scaffold for ligament tissue engineering. J Biomed Mater Res A. 2010;94A(4):1270–82.

    CAS  Google Scholar 

  30. Li W-J, Mauck RL, Cooper JA, Yuan X, Tuan RS. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech. 2007;40(8):1686–93.

    Article  Google Scholar 

  31. Baker SC, Atkin N, Gunning PA, Granville N, Wilson K, Wilson D, Southgate J. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials. 2006;27(16):3136–46.

    Article  CAS  Google Scholar 

  32. Freeman JW, Woods MD, Laurencin CT. Tissue engineering of the anterior cruciate ligament using a braid-twist scaffold design. J Biomech. 2007;40:2029–36.

    Article  Google Scholar 

  33. Wang JH-C. Mechanobiology of tendon. J Biomech. 2006;39(9):1562–82.

    Article  Google Scholar 

  34. Soejima O, Diao E, Lotz JC, Hariharan JS, Naito M. Dorsal and palmar material properties of the adult human flexor profundus tendon in zone II. Hand Surgery. 2003;8(1):53–8.

    Article  Google Scholar 

  35. Wren TAL, Yerby SA, Beaupré GS, Carter DR. Mechanical properties of the human achilles tendon. Clin Biomech. 2001;16(3):245–51.

    Article  CAS  Google Scholar 

  36. Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials. 2005;26(13):1523–32.

    Article  CAS  Google Scholar 

  37. Pham QP, Sharma U, Mikos AG. Electrospun poly(ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules. 2006;7(10):2796–805.

    Article  CAS  Google Scholar 

  38. Balguid A, Mol A, van Marion MH, Bank RA, Bouten CVC, Baaijens FPT. Tailoring fiber diameter in electrospun (poly(ε-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Tissue Eng A. 2009;15(2):437–44.

    Article  CAS  Google Scholar 

  39. Cai S, Smith ME, Redenti SM, Wnek GE, Young MJ. Mouse retinal progenitor cell dynamics on electrospun poly(ε-caprolactone). J Biomater Sci Polym Ed. 2012;23:1451–65.

    CAS  Google Scholar 

  40. Chew SY, Mi R, Hoke A, Leong KW. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials. 2008;29(6):653–61.

    Article  CAS  Google Scholar 

  41. Shang S, Yang F, Cheng X, Walboomers XF, Jansen JA. The effect of electrospun fibre alignment on the behaviour of rat periodontal ligament cells. Eur Cells Mater. 2010;19:180–92.

    CAS  Google Scholar 

Download references

Acknowledgments

The Authors’ wish to thank the EPSRC for funding this research and Prof. P.D. Clegg, The University of Liverpool, for donation of tendon fibroblasts.

Disclosures

  The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Bosworth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosworth, L.A., Alam, N., Wong, J.K. et al. Investigation of 2D and 3D electrospun scaffolds intended for tendon repair. J Mater Sci: Mater Med 24, 1605–1614 (2013). https://doi.org/10.1007/s10856-013-4911-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4911-8

Keywords

Navigation