Skip to main content

Advertisement

Log in

Carbon nanotubes reinforced chitosan films: mechanical properties and cell response of a novel biomaterial for cardiovascular tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Carbon nanotubes have been proposed as fillers to reinforce polymeric biomaterials for the strengthening of their structural integrity to achieve better biomechanical properties. In this study, a new polymeric composite material was introduced by incorporating various low concentrations of multiwalled carbon nanotubes (MWCNTs) into chitosan (CS), aiming at achieving a novel composite biomaterial with superior mechanical and biological properties compared to neat CS, in order to be used in cardiovascular tissue engineering applications. Both mechanical and biological characteristics in contact with the two relevant cell types (endothelial cells and vascular myofibroblasts) were studied. Regarding the mechanical behavior of MWCNT reinforced CS (MWCNT/CS), 5 and 10 % concentrations of MWCNTs enhanced the mechanical behavior of CS, with that of 5 % exhibiting a superior mechanical strength compared to 10 % concentration and neat CS. Regarding biological properties, MWCNT/CS best supported proliferation of endothelial and myofibroblast cells, MWCNTs and MWCNT/CS caused no apoptosis and were not toxic of the examined cell types. Conclusively, the new material could be suitable for tissue engineering (TE) and particularly for cardiovascular TE applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26:5983–90.

    Article  Google Scholar 

  2. Sahithi K, Swetha M, Ramasamy K, Srinivasan N, Selvamurugan N. Polymeric composites containing carbon nanotubes for bone tissue engineering. Int J Biological Macromol. 2010;46:281–3.

    Article  CAS  Google Scholar 

  3. Savaiano JK, Webster TJ. Altered responses of chondrocytes to nanophase PLGA/nanophase titania composites. Biomaterials. 2004;25(7/8):1205–13.

    Article  CAS  Google Scholar 

  4. Venkatesan J, Kim S-K. Chitosan composites for bone tissue engineering—an overview. Mar Drugs. 2010;8:2252–66.

    Article  CAS  Google Scholar 

  5. Upadhyayula VKK, Gadhamshetty V. Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: a review. Biotechnology Adv. 2010;28:802–16.

    Article  CAS  Google Scholar 

  6. Abarrategi A, Gutiérrez MC, Moreno-Vicente C, Hortigüela MJ, Ramos V, López-Lacomba JL, Ferrer ML, del Monte F. Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials. 2008;29(1):94–102.

    Article  CAS  Google Scholar 

  7. Fang N, Zhu A, Chan-Park MB, Chan V. Adhesion contact dynamics of fibroblasts on biomacromolecular surfaces. Macromol Bioscience. 2005;5(10):1022–31.

    Article  CAS  Google Scholar 

  8. Huang YC, Hsu SH, Kuo WC, Chang-Chien CL, Cheng H, Huang YY. Effects of laminin-coated carbon nanotube/chitosan fibers on guided neurite growth. J Biomed Mater Res A. 2011;99(1):86–93.

    Google Scholar 

  9. Liao H, Qi R, Shen M, Cao X, Guo R, Zhang Y, Shi X. Improved cellular response on multiwalled carbon nanotube-incorporated electrospun polyvinyl alcohol/chitosan nanofibrous scaffolds. Colloids Surf B. 2011;84:528–35.

    Article  CAS  Google Scholar 

  10. Tutak W, Park KH, Vasilov A, Starovoytov V, Fanchini G, Cai SQ, Partridge NC, Sesti F, Chhowalla M. Toxicity induced enhanced extracellular matrix production in osteoblastic cells cultured on single-walled carbon nanotube networks. Nanotechnology. 2009;20:255101.

    Article  Google Scholar 

  11. Yildirim ED, Yin X, Nair K, Sun W. Fabrication, characterization, and biocompatibility of single-walled carbon nanotube-reinforced alginate composite scaffolds manufactured using freeform fabrication technique. J Biomed Mater Res B. 2008;87(2):406–14.

    Google Scholar 

  12. Zhao Q, Yin J, Feng X, Shi Z, Ge Z, Jin Z. A biocompatible chitosan composite containing phosphotungstic acid modified single-walled carbon nanotubes. J Nanosci Nanotechnol. 2010;10(11):7126–9.

    Article  CAS  Google Scholar 

  13. Hirano S, Fujitani Y, Furuyama A, Kanno S. Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells. Toxicol Appl Pharmacol. 2010;249(1):8–15.

    Article  CAS  Google Scholar 

  14. Reddy AR, Reddy YN, Krishna DR, Himabindu V. Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells. Toxicology. 2010;272(1–3):11–6.

    Article  CAS  Google Scholar 

  15. Tsukahara T, Haniu H. Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells. Mol Cell Biochem. 2011;352(1–2):57–63.

    Article  CAS  Google Scholar 

  16. Fan H, Wang L, Zhao K, Li N, Shi Z, Ge Z, Jin Z. Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacro-molecules. 2010;11(9):2345–51.

    Article  CAS  Google Scholar 

  17. Carson L, Kelly-Brown C, Stewart M, Oki A, Regisford G, Luo Z, Bakhmutov VI. Synthesis and characterization of chitosan–carbon nanotube composites. Mater Lett. 2009;63(6–7):617–20.

    Article  CAS  Google Scholar 

  18. Tschoeke B, Flanagan TC, Koch S, Sri Harwoko M, Deichmann T, Ella V, et al. Tissue-engineered small caliber vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold. Tissue Eng. 2009;15:1909–18.

    Article  CAS  Google Scholar 

  19. Albanna MZ, Bou-Akl TH, Walters HL, Matthew HWT. Improving the mechanical properties of chitosan-based heart valve scaffolds using chitosan fibers. J Mech Behavior Biomedical Mater. 2012;5(1):171–80.

    Article  CAS  Google Scholar 

  20. Byrne MT, Gun’ko YK. Recent advances in research on carbon nanotube–polymer composites. Adv Mater. 2010;22:1672–88.

    Article  CAS  Google Scholar 

  21. Zhao B, Wang J, Li ZJ, Liu P, Chen D, Zhang YF. Mechanical strength improvement of polypropylene threads modified by PVA/CNT composite coatings. Mater Lett. 2008;62:4380–2.

    Article  CAS  Google Scholar 

  22. Kim HS, Chae YS, Choi JH, Yoon JS, Jin HJ. Thermal properties of poly(ε-caprolactone)/multiwalled carbon nanotubes composites. Adv Compos Mater. 2008;17:157–66.

    Article  CAS  Google Scholar 

  23. Wang SF, Shen L, Zhang WD, Tong YJ. Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules. 2005;6:3067–72.

    Article  CAS  Google Scholar 

  24. Spinks GM, Shin SR, Wallace GG, Whitten PG, Kim SI, Kim SJ. Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion. Sens Actuat B. 2006;115:678–84.

    Article  CAS  Google Scholar 

  25. Pagoulatou E, Triantaphyllidou I-E, Vynios DH, Papachristou DJ, Koletsis E, Deligianni D, Mavrilas D. Biomechanical and structural changes following the decellularization of bovine pericardial tissues for use as a tissue engineering scaffold. J Mater Sci. 2012;23:1387–96.

    CAS  Google Scholar 

  26. Khan U, Ryan K, Blau WJ, Coleman JN. The effect of solvent choice on the mechanical properties of carbon nanotube-polymer composites. Compos Sci Technol. 2007;67:3158.

    Article  CAS  Google Scholar 

  27. van Vlimmeren MAA, Driessen-Mol A, van den Broek M, Bouten CVC, Baaijens FPT. Controlling matrix formation and cross-linking by hypoxia in cardiovascular tissue engineering. J Appl Physiol. 2010;109:1483–91.

    Article  Google Scholar 

  28. Zünd G, Hoerstrup SP, Schoeberlein A, Lachat M, Uhlschmid G, Vogt PR, Turina M. Tissue engineering: a new approach in cardiovascular surgery; seeding of human fibroblasts followed by human endothelial cells on resorbable mesh. Eur J Cardiothorac Surg. 1998;13(2):160–4.

    Article  Google Scholar 

  29. Chupa JM, Foster AM, Sumner SR, Madihally SV, Matthew HW. Vascular cell responses to polysaccharide materials: in vitro and in vivo evaluations. Biomaterials. 2000;21:2315–22.

    Article  CAS  Google Scholar 

  30. Chung TW, Lu YF, Wang SS, Lin YS, Chu SH. Growth of human endothelial cells on photochemically grafted Gly-Arg-Gly-Asp (GRGD) chitosans. Biomaterials. 2002;23:4803–9.

    Article  CAS  Google Scholar 

  31. Wörle-Knirsch JM, Pulskamp K, Krug HF. Oops they did it again! carbon nanotubes hoax scientists in viability assays. Nano Lett. 2006;6:1261–8.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported with a Greek-German bilateral cooperation program IKY & DAAD (IKYDA 2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Deligianni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroustalli, A., Zisimopoulou, A.E., Koch, S. et al. Carbon nanotubes reinforced chitosan films: mechanical properties and cell response of a novel biomaterial for cardiovascular tissue engineering. J Mater Sci: Mater Med 24, 2889–2896 (2013). https://doi.org/10.1007/s10856-013-5029-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5029-8

Keywords

Navigation