Skip to main content

Advertisement

Log in

In vivo biocompatibility of Mg implants surface modified by nanostructured merwinite/PEO

  • Biomaterials Synthesis and Characterization
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Magnesium (Mg) alloys have been suggested as biodegradable bone implant materials due to their good intrinsic biocompatibility and great mechanical properties. Although magnesium has attractive properties as an orthopedic implant material, its quick degradation and low bioactivity may lead to the loss of mechanical integrity of the implant during the bone healing process. In this paper, we endeavor to surmount the abovementioned defects using the surface coating technique. We have recently coated AZ91 magnesium implants with merwinite (Ca3MgSi2O8) through the coupling of plasma electrolytic oxidation (PEO) and electrophoretic deposition method. In this work, we are specifically focused on the in vivo examinations of the coated implants in comparison with the uncoated one. For the in vivo experiment, the rod samples, including the uncoated and merwinite/PEO coated implants, were imbedded into the greater trochanter of rabbits. The results of the in vivo animal test indicated an improvement in biodegradability including slower implant weight loss, reduction in Mg ion released from the coated implants in the blood plasma, lesser release of hydrogen bubbles and an improvement in biocompatibility including an increase in the amount of bone formation and ultimately a mild bone inflammation after the surgery according to the histological images. In summary, proper surface treatment of magnesium implants such as silicate bioactive ceramics may improve their biocompatibility under physiological conditions to making them suitable and applicable for future clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zheng Y, Gu X, Witte F. Biodegradable metals. Mater Sci Eng. 2014;77:1–34.

    Article  Google Scholar 

  2. Alvarez K, Nakajima H. Metallic scaffolds for bone regeneration. Materials. 2009;2(3):790–832.

    Article  Google Scholar 

  3. Niinomi M. Recent metallic materials for biomedical applications. Metall Mater Trans A. 2002;33(3):477–86.

    Article  Google Scholar 

  4. Razavi M, Fathi M, Savabi O, Beni BH, Vashaee D, Tayebi L. Surface microstructure and in vitro analysis of nanostructured akermanite (Ca2MgSi2O7) Coating on biodegradable magnesium alloy for biomedical applications. Colloids Surf B. 2014;117:432–40.

    Article  Google Scholar 

  5. Shahini A, Yazdimamaghani M, Walker K, Eastman M, Hatami-Marbini H, Smith B, et al. 3D conductive nanocomposite scaffold for bone tissue engineering. Int J Nanomed. 2014;9:167–81.

    Google Scholar 

  6. Yazdimamaghani M, Vashaee D, Assefa S, Walker K, Madihally S, Köhler G, et al. Hybrid macroporous gelatin/bioactive-glass/nanosilver scaffolds with controlled degradation behavior and antimicrobial activity for bone tissue engineering. J Biomed Nanotechnol. 2014;10(6):911–31.

    Article  Google Scholar 

  7. Rouhani P, Salahinejad E, Kaul R, Vashaee D, Tayebi L. Nanostructured zirconium titanate fibers prepared by particulate sol–gel and cellulose templating techniques. J Alloy Compd. 2013;568:102–5.

    Article  Google Scholar 

  8. Mozafari M, Vashaee D, Tayebi L. Electroconductive nanocomposite scaffolds: a new strategy into tissue engineering and regenerative medicine. In: Ebrahimi F, editor. Nanocomposites—new trends and developments. INTECH; 2012.

  9. Shabafrooz V, Mozafari M, Vashaee D, Tayebi L. Electrospun nanofibers: from filtration membranes to highly specialized tissue engineering scaffolds. J Nanosci Nanotechnol. 2014;14(1):522–34.

    Article  Google Scholar 

  10. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728–34.

    Article  Google Scholar 

  11. Yazdanpanah A, Kamalian R, Moztarzadeh F, Mozafari M, Ravarian R, Tayebi L. Enhancement of fracture toughness in bioactive glass-based nanocomposites with nanocrystalline forsterite as advanced biomaterials for bone tissue engineering applications. Ceram Int. 2012;38(6):5007–14.

    Article  Google Scholar 

  12. Kirkland N, Birbilis N, Staiger M. Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater. 2012;8(3):925–36.

    Article  Google Scholar 

  13. Razavi M, Fathi M, Savabi O, Vashaee D, Tayebi L. In vitro study of nanostructured diopside coating on Mg alloy orthopedic implants. Mater Sci Eng C. 2014;41:168–77.

    Article  Google Scholar 

  14. Razavi M, Fathi M, Savabi O, Vashaee D, Tayebi L. Improvement of biodegradability, bioactivity, mechanical integrity and cytocompatibility behavior of biodegradable mg based orthopedic implants using nanostructured bredigite (Ca7MgSi4O16) bioceramic coated via ASD/EPD technique. Ann Biomed Eng. 2014;42(12):1–14.

    Article  Google Scholar 

  15. Farraro KF, Kim KE, Woo SL, Flowers JR, McCullough MB. Revolutionizing orthopaedic biomaterials: the potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering. J Biomech. 2013;47:1979–86.

    Article  Google Scholar 

  16. Razavi M, Fathi M, Savabi O, Vashaee D, Tayebi L. Biodegradable magnesium alloy coated by fluoridated hydroxyapatite using MAO/EPD technique. Surf Eng. 2014;30(8):545–51.

    Article  Google Scholar 

  17. Yazdimamaghani M, Razavi M, Vashaee D, Tayebi L. Development and degradation behavior of magnesium scaffolds coated with polycaprolactone for bone tissue engineering. Mater Lett. 2014;132:106–10.

    Article  Google Scholar 

  18. Li J, Han P, Ji W, Song Y, Zhang S, Chen Y, et al. The in vitro indirect cytotoxicity test and in vivo interface bioactivity evaluation of biodegradable FHA coated Mg–Zn alloys. Mater Sci Eng B. 2011;176(20):1785–8.

    Article  Google Scholar 

  19. Yazdimamaghani M, Razavi M, Vashaee D, Tayebi L. Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite. Mater Sci Eng C. 2015;49:436–44.

    Article  Google Scholar 

  20. Wong HM, Yeung KW, Lam KO, Tam V, Chu PK, Luk KD, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials. 2010;31(8):2084–96.

    Article  Google Scholar 

  21. Salahinejad E, Hadianfard M, Macdonald D, Mozafari M, Vashaee D, Tayebi L. Multilayer zirconium titanate thin films prepared by a sol–gel deposition method. Ceram Int. 2012;39:127

    Google Scholar 

  22. Salahinejad E, Hadianfard M, Macdonald D, Mozafari M, Vashaee D, Tayebi L. Zirconium titanate thin film prepared by an aqueous particulate sol–gel spin coating process using carboxymethyl cellulose as dispersant. Mater Lett. 2012;88:5–8.

    Article  Google Scholar 

  23. Yazdimamaghani M, Razavi M, Vashaee D, Tayebi L. Microstructural and mechanical study of PCL coated Mg scaffolds. Surf Eng. 2014;. doi:10.1179/1743294414Y.0000000307.

    Google Scholar 

  24. Hornberger H, Virtanen S, Boccaccini A. Biomedical coatings on magnesium alloys—a review. Acta Biomater. 2012;8(7):2442–55.

    Article  Google Scholar 

  25. Wu C, Chang J, Xiao Y. Silicate—based bioactive ceramics for bone regeneration application. In: Advanced bioactive inorganic materials for bone regeneration and drug delivery. Taylor & Francis Group, LLC, CRC Press; 2008. p. 25–46. http://books.google.com/books?hl=en&lr=&id=itQOjXSEEp0C&oi=fnd&pg=PA25&dq=Silicate%E2%80%94based+bioactive+ceramics+for+bone+regeneration+application&ots=aw2k0vnFZj&sig=BMo3FxXqeXbaBSJhtenJiJ6pHnA#v=onepage&q=Silicate%E2%80%94based%20bioactive%20ceramics%20for%20bone%20regeneration%20application&f=false

  26. Larsen E, Foshag W. Merwinite, a new calcium magnesium orthosilicate from Crestmore, California. Am Mineral. 1921;6:143–8.

    Google Scholar 

  27. Ou J, Kang Y, Huang Z, Chen X, Wu J, Xiao R, et al. Preparation and in vitro bioactivity of novel merwinite ceramic. Biomed Mater. 2008;3(1):015015.

    Article  Google Scholar 

  28. Hafezi-Ardakani M, Moztarzadeh F, Rabiee M, Talebi AR. Synthesis and characterization of nanocrystalline merwinite (Ca3Mg(SiO4)2) via sol–gel method. Ceram Int. 2011;37(1):175–80.

    Article  Google Scholar 

  29. Razavi M, Fathi M, Savabi O, Hashemi Beni B, Vashaee D, Tayebi L. Nanostructured merwinite bioceramic coating on Mg alloy deposited by electrophoretic deposition. Ceram Int. 2014;40:9473–84.

    Article  Google Scholar 

  30. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth C, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26(17):3557–63.

    Article  Google Scholar 

  31. Xu L, Pan F, Yu G, Yang L, Zhang E, Yang K. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials. 2009;30(8):1512–23.

    Article  Google Scholar 

  32. Razavi M, Fathi M, Savabi O, Vashaee D, Tayebi L. Biodegradation, bioactivity and in vivo biocompatibility analysis of plasma electrolytic oxidized (PEO) biodegradable Mg implants. Phys Sci Int J. 2014;4(5):708–22.

    Article  Google Scholar 

  33. Song Y, Zhang S, Li J, Zhao C, Zhang X. Electrodeposition of Ca–P coatings on biodegradable Mg alloy: in vitro biomineralization behavior. Acta Biomater. 2010;6(5):1736–42.

    Article  Google Scholar 

  34. Razavi M, Fathi M, Savabi O, Vashaee D, Tayebi L. Micro-arc oxidation and electrophoretic deposition of nano-grain merwinite (Ca3MgSi2O8) surface coating on magnesium alloy as biodegradable metallic implant. Surf Interface Anal. 2014;. doi:10.1002/sia.5465.

    Google Scholar 

  35. Rettig R, Virtanen S. Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids. J Biomed Mater Res Part A. 2009;88(2):359–69.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the contributions of Isfahan University of Technology, Torabinejad Dental Research Center, Oklahoma Center for Advancement of Science and Technology (Grant No. AR131-054 8161), AFOSR (Grant No. FA9550-10-1-0010) and the National Science Foundation (NSF, Grant No. 0933763).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Razavi or Lobat Tayebi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razavi, M., Fathi, M., Savabi, O. et al. In vivo biocompatibility of Mg implants surface modified by nanostructured merwinite/PEO. J Mater Sci: Mater Med 26, 184 (2015). https://doi.org/10.1007/s10856-015-5514-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5514-3

Keywords

Navigation