Skip to main content

Advertisement

Log in

In vitro study on cytocompatibility and osteogenesis ability of Ti–Cu alloy

  • Biocompatibility Studies
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Titanium implants easily suffer bacteria-related infections in clinic due to their inherent lack of self-protection ability. Therefore, a novel Ti–Cu alloy with good antibacterial activity has been developed as a new kind of implant material. This study focuses on a systematic evaluation of both cytocompatibility and osteogenesis activity of the Ti–Cu alloy in vitro. It was revealed that an addition of 5% Cu into pure Ti would not cause any negative effect on osteoblasts adhesion, proliferation and apoptosis cultured with Ti–Cu alloy. In addition, Ti–Cu alloy could significantly promote the osteogenic differentiation of MG 63 cells by upregulating the osteogenesis-related gene expressions including alkaline phosphatase (ALP), Collagen I (Colla I), osteopontin (OPN) and osteocalcin (OCN). These promising results suggest that the Ti–Cu alloy has great potential to be used as a multi-functional titanium implant for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review. Prog Mater Sci. 2009;54:397–425.

    Article  CAS  Google Scholar 

  2. Chen WZ, Shen XK, Hu Y, Xu K, Ran QC, Yu YL et al. Surface functionalization of titanium implants with chitosan-catechol conjugate for suppression of ROS-induced cells damage and improvement of osteogenesis. Biomaterials. 2017;114:82–96.

    Article  CAS  Google Scholar 

  3. Gao A, Hang RQ, Bai L, Tang B, Chu PK. Electrochemical surface engineering of titanium-based alloys for biomedical application. Electrochim Acta. 2018;271:699–718.

    Article  CAS  Google Scholar 

  4. Zheng YH, Li JB, Liu XY, Sun J. Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface. Int J Nanomedicine. 2012;7:875–84.

    CAS  Google Scholar 

  5. Dorkhan M, Chavez de Paz LE, Skepo M, Svensater G, Davies JR. Effects of saliva or serum coating on adherence of Streptococcus oralis strains to titanium. Microbiology. 2011;158:390–7.

    Article  Google Scholar 

  6. Hickok NJ, Shapiro IM. Immobilized antibiotics to prevent orthopaedic implant infections. Adv Drug Deliv Rev. 2012;64:1165–76.

    Article  CAS  Google Scholar 

  7. Li M, Ma Z, Zhu Y, Xia H, Yao MY, Chu X et al. Toward a molecular understanding of the antibacterial mechanism of copper-bearing titanium alloys against Staphylococcus aureus. Adv Healthc Mater. 2016;5:557–66.

    Article  CAS  Google Scholar 

  8. Goudouri O-M, Kontonasaki E, Lohbauer U, Boccaccini AR. Antibacterial properties of metal and metalloid ions in chronic periodontitis and peri-implantitis therapy. Acta Biomater. 2014;10:3795–810.

    Article  CAS  Google Scholar 

  9. Gao A, Hang RQ, Huang XB, Zhao LZ, Zhang XY, Wang L et al. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials. 2014;35:4223–35.

    Article  CAS  Google Scholar 

  10. Zhao LZ, Chu PK, Zhang YM, Wu ZF. Antibacterial coatings on titanium implants. J Biomed Mater Res B. 2009;91B:470–80.

    Article  CAS  Google Scholar 

  11. Yu YQ, Jin GD, Xue Y, Wang DH, Liu XY, Sun J. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants. Acta Biomater. 2017;49:590–603.

    Article  CAS  Google Scholar 

  12. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver Ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74:2171–8.

    Article  CAS  Google Scholar 

  13. Ren L, Yang K, Guo L, Chai HW. Preliminary study of anti-infective function of a copper-bearing stainless steel. Mater Sci Eng: C. 2012;32:1204–9.

    Article  CAS  Google Scholar 

  14. Yao X, Sun QY, Xiao L, Sun J. Effect of Ti2Cu precipitates on mechanical behavior of Ti–2.5Cu alloy subjected to different heat treatments. J Alloy Compd. 2009;484:196–202.

    Article  CAS  Google Scholar 

  15. Ma Z, Li M, Liu R, Ren L, Zhang Y, Pan HB et al. In vitro study on an antibacterial Ti-5Cu alloy for medical application. J Mater Sci-Mater Med. 2016;27:91.

    Article  Google Scholar 

  16. Liu R, Memarzadeh K, Chang B, Zhang Y, Ma Z, Allaker RP et al. Antibacterial effect of copper-bearing titanium alloy (Ti–Cu) against Streptococcus mutans and Porphyromonas gingivalis. Sci Rep. 2016;6:29985.

    Article  CAS  Google Scholar 

  17. Liu R, Tang Y, Zeng L, Zhao Y, Ma Z, Sun Z et al. In vitro and in vivo studies of anti-bacterial copper-bearing titanium alloy for dental application. Dent Mater. 2018;34:1112–26.

    Article  CAS  Google Scholar 

  18. Burghardt I, Luthen F, Prinz C, Kreikemeyer B, Zietz C, Neumann HG et al. A dual function of copper in designing regenerative implants. Biomaterials. 2015;44:36–44.

    Article  CAS  Google Scholar 

  19. ISO-10993-12. Biological evaluation of medical devices-part 12: sample preparation and reference materials. Arlington, VA: ANSI/AAMI; 2008.

    Google Scholar 

  20. ISO-10993-5. Biological evaluation of medical devices-part 5: tests in vitro forcytotoxicity: in vitro methods. Arlington, VA: ANSI/AAMI; 2009.

    Google Scholar 

  21. Fox SJ, Fazil MH, Dhand C, Venkatesh M, Goh ET, Harini S et al. Insight into membrane selectivity of linear and branched polyethylenimines and their potential as biocides for advanced wound dressings. Acta Biomater. 2016;37:155–64.

    Article  CAS  Google Scholar 

  22. Al Nakouzi N, Wang CK, Beraldi E, Jager W, Ettinger S, Fazli L et al. Clusterin knockdown sensitizes prostate cancer cells to taxane by modulating mitosis. EMBO Mol Med. 2016;8:761–78.

    Article  CAS  Google Scholar 

  23. Ren L, Xu L, Feng JW, Zhang Y, Yang K. In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis. J Mater Sci-Mater Med. 2012;23:1235–45.

    Article  CAS  Google Scholar 

  24. Ren GG, Hu DW, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents. 2009;33:587–90.

    Article  CAS  Google Scholar 

  25. Shim GI, Kim SH, Eom HW, Choi SY. Concentration- and roughness-dependent antibacterial and antifungal activities of CuO thin films and their Cu ion cytotoxicity and elution behavior. J Ind Microbiol Biotechnol. 2015;42:735–44.

    Article  CAS  Google Scholar 

  26. Ballo MK, Rtimi S, Mancini S, Kiwi J, Pulgarin C, Entenza JM et al. Bactericidal activity and mechanism of action of copper-sputtered flexible surfaces against multidrug-resistant pathogens. Appl Microbiol Biotechnol. 2016;100:5945–53.

    Article  CAS  Google Scholar 

  27. Liu HQ, Zhang DY, Shen F, Zhang G, Song SH. Corrosion and ion release behavior of Cu/Ti film prepared via physical vapor deposition in vitro as potential biomaterials for cardiovascular devices. Appl Surf Sci. 2012;258:7286–91.

    Article  CAS  Google Scholar 

  28. Li JY, Zhai D, Lv F, Yu QQ, Ma HS, Yin JB et al. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater. 2016;36:254–66.

    Article  CAS  Google Scholar 

  29. Wang L, Ren L, Tang TT, Dai KR, Yang K, Hao YQ. A novel nano-copper-bearing stainless steel with reduced Cu2+ release only inducing transient foreign body reaction via affecting the activity of NF-κB and Caspase 3. Int J Nanomed. 2015;10:6725–39.

    CAS  Google Scholar 

  30. Lin YN, Xiao W, Bal BS, Rahaman MN. Effect of copper-doped silicate 13-93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo. Mater Sci Eng: C-Mater Biol Appl. 2016;67:440–52.

    Article  CAS  Google Scholar 

  31. Shi MC, Chen ZT, Farnaghi S, Friis T, Mao XL, Xiao Y et al. Copper-doped mesoporous silica nanospheres, a promising immunomodulatory agent for inducing osteogenesis. Acta Biomater. 2016;30:334–44.

    Article  CAS  Google Scholar 

  32. Ren L, Wong HM, Yan CH, Yeung KW, Yang K. Osteogenic ability of Cu-bearing stainless steel. J Biomed Mater Res B. 2015;103:1433–44.

    Article  CAS  Google Scholar 

  33. Cao BM, Zheng YD, Xi TF, Zhang CC, Song WH, Burugapalli K et al. Concentration-dependent cytotoxicity of copper ions on mouse fibroblasts in vitro: effects of copper ion release from TCu380A vs TCu220C intra-uterine devices. Biomed Microdevices. 2012;14:709–20.

    Article  CAS  Google Scholar 

  34. Wu CT, Zhou YH, Xu MC, Han PP, Chen L, Chang J et al. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials. 2013;34:422–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2018YFC1106600, 2016YFC1100600), National Natural Science Foundation (Nos. 51631009, 51811530320, 81572113), Innovation Fund Project of Institute of Metal Research, Chinese Academy of Sciences (2017-ZD01) and Key Projects for Foreign Cooperation of Bureau of International Cooperation Chinese Academy of Sciences (174321KYSB2018000) and Shenzhen Science and Technology Research Funding (JCYJ20160608153641020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Zhao, Ling Ren or Ke Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Ma, Z., Kunle Kolawole, S. et al. In vitro study on cytocompatibility and osteogenesis ability of Ti–Cu alloy. J Mater Sci: Mater Med 30, 75 (2019). https://doi.org/10.1007/s10856-019-6277-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6277-z

Navigation