Skip to main content

Advertisement

Log in

Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Nuclear magnetic resonance (NMR) and Mass Spectroscopy (MS) are the two most common spectroscopic analytical techniques employed in metabolomics. The large spectral datasets generated by NMR and MS are often analyzed using data reduction techniques like Principal Component Analysis (PCA). Although rapid, these methods are susceptible to solvent and matrix effects, high rates of false positives, lack of reproducibility and limited data transferability from one platform to the next. Given these limitations, a growing trend in both NMR and MS-based metabolomics is towards targeted profiling or “quantitative” metabolomics, wherein compounds are identified and quantified via spectral fitting prior to any statistical analysis. Despite the obvious advantages of this method, targeted profiling is hindered by the time required to perform manual or computer-assisted spectral fitting. In an effort to increase data analysis throughput for NMR-based metabolomics, we have developed an automatic method for identifying and quantifying metabolites in one-dimensional (1D) proton NMR spectra. This new algorithm is capable of using carefully constructed reference spectra and optimizing thousands of variables to reconstruct experimental NMR spectra of biofluids using rules and concepts derived from physical chemistry and NMR theory. The automated profiling program has been tested against spectra of synthetic mixtures as well as biological spectra of urine, serum and cerebral spinal fluid (CSF). Our results indicate that the algorithm can correctly identify compounds with high fidelity in each biofluid sample (except for urine). Furthermore, the metabolite concentrations exhibit a very high correlation with both simulated and manually-detected values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aich P, Potter AA, Griebel PJ (2009) Modern approaches to understanding stress and disease susceptibility: a review with special emphasis on respiratory disease. Int J Gen Med 2:19–32

    Google Scholar 

  • Altman DG, Bland JM (1994) Diagnostic tests 1: sensitivity and specificity. BMJ 308:1552

    Article  Google Scholar 

  • Beckonert O, Coen M, Keun HC, Wang Y, Ebbels TM, Holmes E, Lindon JC, Nicholson JK (2010) High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc 5:1019–1032

    Article  Google Scholar 

  • Bertram HC, Eggers N, Eller N (2009) Potential of human saliva for nuclear magnetic resonance-based metabolomics and for health-related biomarker identification. Anal Chem 81:9188–9193

    Article  Google Scholar 

  • Bezabeh T, Somorjai RL, Smith ICP (2009) MR metabolomics of fecal extracts: applications in the study of bowel diseases. Magn Reson Chem 47:S54–S61

    Article  Google Scholar 

  • Cevallos-Cevallos JM, Reyes-De-Corcuera JI, Etxeberria E, Danyluk MD, Rodrick GE (2009) Metabolomic analysis in food science: a review. Trends Food Sci Tech 20:557–566

    Google Scholar 

  • Chang D, Banack CD, Shah SL (2007a) Robust baseline correction algorithm for signal dense NMR spectra. J Magn Reson 187:288–292

    Article  ADS  Google Scholar 

  • Chang D, Weljie A, Newton J (2007b) Leveraging latent information in NMR spectra for robust predictive models. Pac Symp Biocomput 115–126

  • Chen C, Gonzalez FJ, Idle JR (2007a) LC-MS-based metabolomics in drug metabolism. Drug Metab Rev 39:581–597

    Article  Google Scholar 

  • Chen DJ, Lee CY, Park CH, Mendes P (2007b) Parallelizing simulated annealing algorithms based on high-performance computer. J Global Optim 39:261–289

    Article  MATH  Google Scholar 

  • Chenomx Nmr Suite (2010) Chenomx Inc., Edmonton, AB, Canada. http://www.chenomx.com

  • Cui Q, Lewis IA, Hegeman AD, Anderson ME, Li J, Schulte CF, Westler WM, Eghbalnia HR, Sussman MR, Markley JL (2008) Metabolite identification via the Madison Metabolomics Consortium Database. Nat Biotechnol 26:162–164

    Article  Google Scholar 

  • Fonville JM, Maher AD, Coen M, Holmes E, Lindon JC, Nicholson JK (2010) Evaluation of full-resolution J-resolved 1H NMR projections of biofluids for metabonomics information retrieval and biomarker identification. Anal Chem 82:1811–1821

    Article  Google Scholar 

  • Frassineti C, Ghelli S, Gans P, Sabatini A, Moruzzi MS, Vacca A (1995) Nuclear magnetic resonance as a tool for determining protonation constants of natural polyprotic bases in solution. Anal Biochem 231:374–382

    Article  Google Scholar 

  • Griffin JL, Kauppinen RA (2007) Tumour metabolomics in animal models of human cancer. J Proteome Res 6:498–505

    Article  Google Scholar 

  • Hall RD, Brouwer ID, Fitzgerald MA (2008) Plant metabolomics and its potential application for human nutrition. Physiol Plant 132:162–175

    Google Scholar 

  • Kaddurah-Daouk R, Kristal BS, Weinshilboum RM (2008) Metabolomics: a global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol 48:653–683

    Article  Google Scholar 

  • Keun HC (2006) Metabonomic modeling of drug toxicity. Pharmacol Ther 109:92–106

    Article  Google Scholar 

  • Kim YS, Maruvada P, Milner JA (2008) Metabolomics in biomarker discovery: future uses for cancer prevention. Futur Oncol 4:93–102

    Article  Google Scholar 

  • Kim K, Aronov P, Zakharkin SO, Anderson D, Perroud B, Thompson IM, Weiss RH (2009) Urine metabolomics analysis for kidney cancer detection and biomarker discovery. Mol Cell Proteomics 8:558–570

    Article  Google Scholar 

  • Kimura T, Noguchi Y, Shikata N, Takahashi M (2009) Plasma amino acid analysis for diagnosis and amino acid-based metabolic networks. Curr Opin Clin Nutr Metab Care 12:49–53

    Article  Google Scholar 

  • Kristal BS, Shurubor Y, Marur V (2007) Projection-based informatics approaches to serum/plasma metabolomics data: applications to biomarkers for caloric intake in rats. Faseb J 21:A310–A310

    Google Scholar 

  • Li H, Jiang Y, He FC (2008) Recent development of metabonomics and its applications in clinical research. Yi Chuan 30:389–399

    Article  Google Scholar 

  • Lindon JC, Nicholson JK (2008) Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics. Annu Rev Anal Chem 1:45–69

    Article  Google Scholar 

  • Lindon JC, Nicholson JK, Holmes E (2007) The handbook of metabonomics and metabolomics, 1st edn. Elsevier, Amsterdam

  • Markley JL, Anderson ME, Cui Q, Eghbalnia HR, Lewis IA, Hegeman AD, Li J, Schulte CF, Sussman MR, Westler WM, Ulrich EL, Zolnai Z (2007) New bioinformatics resources for metabolomics. Pac Symp Biocomput 157–168

  • Milgram E, Nordstrom A (2009) Asms metabolomics workshop survey. http://fiehnlab.ucdavis.edu/staff/kind/Metabolomics-Survey-2009/

  • Moore JG, Sillerud OL (1994) The pH dependence of chemical shift and spin-spin coupling for citrate. J Magn Res B 103:87–88

    Google Scholar 

  • Morris GA, Barjat H, Home TJ (1997) Reference deconvolution methods. Prog Nucl Mag Res Sp 31:197–257

    Google Scholar 

  • Oakman C, Tenori L, Biganzoli L, Santarpia L, Cappadona S, Luchinat C, Di Leo A (2010) Uncovering the metabolomic fingerprint of breast cancer. Int J Biochem Cell Biol

  • Odunsi K (2007) Cancer diagnostics using 1H-NMR-based metabonomics. Ernst Schering Found Symp Proc 4:205–226

    Google Scholar 

  • Poullet JB, Sima DM, Simonetti AW, De Neuter B, Vanhamme L, Lemmerling P, Van Huffel S (2007) An automated quantitation of short echo time MRS spectra in an open source software environment: AQSES. NMR Biomed 20:493–504

    Article  Google Scholar 

  • Poullet JB, Sima DM, Van Huffel S (2008) MRS signal quantitation: a review of time- and frequency-domain methods. J Magn Reson 195:134–144

    Article  ADS  Google Scholar 

  • Quinones MP, Kaddurah-Daouk R (2009) Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiol Dis 35:165–176

    Article  Google Scholar 

  • Scalbert A, Brennan L, Fiehn O, Hankemeier T, Kristal BS, van Ommen B, Pujos-Guillot E, Verheij E, Wishart D, Wopereis S (2009) Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics 5:435–458

    Article  Google Scholar 

  • Schiffmann R, Waldek S, Benigni A, Auray-Blais C (2010) Biomarkers of Fabry disease nephropathy. Clin J Am Soc Nephrol 5:360–364

    Article  Google Scholar 

  • Serkova NJ, Niemann CU (2006) Pattern recognition and biomarker validation using quantitative 1H-NMR-based metabolomics. Expert Rev Mol Diagn 6:717–731

    Article  Google Scholar 

  • Sima DM, Van Huffel S (2006) Regularized semiparametric model identification with application to nuclear magnetic resonance signal quantification with unknown macromolecular base-line. J Roy Stat Soc B 68:383–409

    Article  MATH  Google Scholar 

  • Sinclair AJ, Viant MR, Ball AK, Burdon MA, Walker EA, Stewart PM, Rauz S, Young SP (2010) NMR-based metabolomic analysis of cerebrospinal fluid and serum in neurological diseases—a diagnostic tool? NMR Biomed 23:123–132

    Google Scholar 

  • Spratlin JL, Serkova NJ, Eckhardt SG (2009) Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 15:431–440

    Article  Google Scholar 

  • Staab JM, O’Connell TM, Gomez SM (2010) Enhancing metabolomic data analysis with Progressive Consensus Alignment of NMR Spectra (PCANS). BMC Bioinform 11:123

    Article  Google Scholar 

  • Stein SE, Scott DR (1994) Optimization and testing of mass-spectral library search algorithms for compoud identification. J Am Soc Mass Spectr 5:859–866

    Article  Google Scholar 

  • Tainsky MA (2009) Genomic and proteomic biomarkers for cancer: a multitude of opportunities. Biochim Biophys Acta 1796:176–193

    Google Scholar 

  • Tiziani S, Lopes V, Gunther UL (2009) Early stage diagnosis of oral cancer using 1H NMR-based metabolomics. Neoplasia 11:269–276

    Google Scholar 

  • Van Der Graaf M, Heerschap A (1996) Effect of cation binding on the proton chemical shifts and the spin-spin coupling constant of citrate. J Magn Res B 112:58–62

  • Vangala S, Tonelli A (2007) Biomarkers, metabonomics, and drug development: can inborn errors of metabolism help in understanding drug toxicity? AAPS J 9:E284–E297

    Article  Google Scholar 

  • Veselkov KA, Lindon JC, Ebbels TMD, Crockford D, Volynkin VV, Holmes E, Davies DB, Nicholson JK (2009) Recursive segment-wise peak alignment of biological 1H NMR spectra for improved metabolic biomarker recovery. Anal Chem 81:56–66

    Article  Google Scholar 

  • Waterman CL, Kian-Kai C, Griffin JL (2010) Metabolomic strategies to study lipotoxicity in cardiovascular disease. Biochim Biophys Acta 1801:230–234

    Google Scholar 

  • Weiss RH, Kim K, Tolstikov V (2008) Use of urinary metabolomics to identify biomarkers for kidney cancer. Cancer Biomark 4:167–167

    Google Scholar 

  • Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM (2006) Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 78:4430–4442

    Article  Google Scholar 

  • Wishart DS (2008a) Applications of metabolomics in drug discovery and development. Drugs R&d 9:307–322

    Article  Google Scholar 

  • Wishart DS (2008b) Metabolomics: applications to food science and nutrition research. Trends Food Sci Tech 19:482–493

    Article  Google Scholar 

  • Wishart DS (2008c) Quantitative metabolomics using NMR. Trac-trend Anal Chem 27:228–237

    Article  Google Scholar 

  • Wishart DS, Lewis MJ, Morrissey JA, Flegel MD, Jeroncic K, Xiong Y, Cheng D, Eisner R, Gautam B, Tzur D, Sawhney S, Bamforth F, Greiner R, Li L (2008) The human cerebrospinal fluid metabolome. J Chromatogr B Analyt Technol Biomed Life Sci 871:164–173

    Article  Google Scholar 

  • Wolfender JL, Glauser G, Boccard J, Rudaz S (2009) MS-based plant metabolomic approaches for biomarker discovery. Nat Prod Commun 4:1417–1430

    Google Scholar 

  • Woo HM, Kim KM, Choi MH, Jung BH, Lee J, Kong G, Nam SJ, Kim S, Bai SW, Chung BC (2009) Mass spectrometry based metabolomic approaches in urinary biomarker study of women’s cancers. Clin Chim Acta 400:63–69

    Article  Google Scholar 

  • Xi Y, Rocke DM (2008) Baseline correction for NMR spectroscopic metabolomics data analysis. BMC Bioinform 9:324

    Article  Google Scholar 

  • Xia JG, Bjorndahl TC, Tang P, Wishart DS (2008) MetaboMiner—semi-automated identification of metabolites from 2D NMR spectra of complex biofluids. Bmc Bioinform 9:ARTN 507

    Google Scholar 

  • Young SP, Wallace GR (2009) Metabolomic analysis of human disease and its application to the eye. J Ocul Biol Dis Infor 2:235–242

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mercier, P., Lewis, M.J., Chang, D. et al. Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra. J Biomol NMR 49, 307–323 (2011). https://doi.org/10.1007/s10858-011-9480-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-011-9480-x

Keywords

Navigation