Skip to main content
Log in

Long-chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart mitochondria

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Cardiomyopathy is a common clinical feature of some inherited disorders of mitochondrial fatty acid β-oxidation including mitochondrial trifunctional protein (MTP) and isolated long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies. Since individuals affected by these disorders present tissue accumulation of various fatty acids, including long-chain 3-hydroxy fatty acids, in the present study we investigated the effect of 3-hydroxydecanoic (3 HDCA), 3-hydroxydodecanoic (3 HDDA), 3-hydroxytetradecanoic (3 HTA) and 3-hydroxypalmitic (3 HPA) acids on mitochondrial oxidative metabolism, estimated by oximetry, NAD(P)H content, hydrogen peroxide production, membrane potential (ΔΨ) and swelling in rat heart mitochondrial preparations. We observed that 3 HTA and 3 HPA increased resting respiration and diminished the respiratory control and ADP/O ratios using glutamate/malate or succinate as substrates. Furthermore, 3 HDDA, 3 HTA and 3 HPA decreased ΔΨ, the matrix NAD(P)H pool and hydrogen peroxide production. These data indicate that these fatty acids behave as uncouplers of oxidative phosphorylation. We also verified that 3 HTA-induced uncoupling-effect was not mediated by the adenine nucleotide translocator and that this fatty acid induced the mitochondrial permeability transition pore opening in calcium-loaded organelles since cyclosporin A prevented the reduction of mitochondrial ΔΨ and swelling provoked by 3 HTA. The present data indicate that major 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies behave as strong uncouplers of oxidative phosphorylation potentially impairing heart energy homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeywardena MY, Allen TM, Charnock JS (1983) Lipid-protein interactions of reconstituted membrane-associated adenosinetriphosphatases. Use of a gel-filtration procedure to examine phospholipid-activity relationships. Biochim Biophys Acta 729(1):62–74

    Article  CAS  Google Scholar 

  • Akerman KE, Wikström MK (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 68(2):191–197

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Corr PB, Creer MH, Yamada KA, Saffitz JE, Sobel BE (1989) Prophylaxis of early ventricular fibrillation by inhibition of acylcarnitine accumulation. J Clin Invest 83(3):927–936. doi:10.1172/JCI113978, Research Support, U.S. Gov’t, P.H.S.

    Article  CAS  Google Scholar 

  • Costa CG, Dorland L, Holwerda U, de Almeida IT, Poll-The BT, Jakobs C et al (1998) Simultaneous analysis of plasma free fatty acids and their 3-hydroxy analogs in fatty acid beta-oxidation disorders. Clin Chem 44(3):463–471, Research Support, Non-U.S. Gov’t

    CAS  Google Scholar 

  • Das AM, Fingerhut R, Wanders RJ, Ullrich K (2000) Secondary respiratory chain defect in a boy with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: possible diagnostic pitfalls. Eur J Pediatr 159(4):243–246, Case Reports

    Article  CAS  Google Scholar 

  • Das AM, Illsinger S, Lucke T, Hartmann H, Ruiter JP, Steuerwald U et al (2006) Isolated mitochondrial long-chain ketoacyl-CoA thiolase deficiency resulting from mutations in the HADHB gene. Clin Chem 52(3):530–534. doi:10.1373/clinchem.2005.062000

    Article  CAS  Google Scholar 

  • Du G, Mouithys-Mickalad A, Sluse FE (1998) Generation of superoxide anion by mitochondria and impairment of their functions during anoxia and reoxygenation in vitro. Free Radic Biol Med 25(9):1066–1074, Research Support, Non-U.S. Gov’t

    Article  CAS  Google Scholar 

  • Estabrook RW (1967) Mitochondrial respiratory control and the polarographic measurement of ADP/O ratios. In: Estabrook RW, Pullman ME (eds) Methods enzymol, Vol. 10. Academic, New York, pp 41–47, Oxidation and Phosphorylation

    Google Scholar 

  • Ferranti R, da Silva MM, Kowaltowski AJ (2003) Mitochondrial ATP-sensitive K+channel opening decreases reactive oxygen species generation. FEBS Lett 536(1–3):51–55

    Article  CAS  Google Scholar 

  • Halldin MU, Forslund A, von Dobeln U, Eklund C, Gustafsson J (2007) Increased lipolysis in LCHAD deficiency. J Inherit Metab Dis 30(1):39–46. doi:10.1007/s10545-006-0296-x, Case Reports Research Support, Non-U.S. Gov’t

    Article  CAS  Google Scholar 

  • Hintz SR, Matern D, Strauss A, Bennett MJ, Hoyme HE, Schelley S et al (2002) Early neonatal diagnosis of long-chain 3-hydroxyacyl coenzyme a dehydrogenase and mitochondrial trifunctional protein deficiencies. Mol Genet Metab 75(2):120–127. doi:10.1006/mgme.2001.3282, Case Reports

    Article  CAS  Google Scholar 

  • Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115(3):547–555. doi:10.1172/JCI24405, Research Support, U.S. Gov’t, P.H.S. Review

    CAS  Google Scholar 

  • Jones PM, Moffitt M, Joseph D, Harthcock PA, Boriack RL, Ibdah JA et al (2001) Accumulation of free 3-hydroxy fatty acids in the culture media of fibroblasts from patients deficient in long-chain l-3-hydroxyacyl-CoA dehydrogenase: a useful diagnostic aid. Clin Chem 47(7):1190–1194

    CAS  Google Scholar 

  • Kimelberg HK, Papahadjopoulos D (1974) Effects of phospholipid acyl chain fluidity, phase transitions, and cholesterol on (Na+ + K+)-stimulated adenosine triphosphatase. J Biol Chem 249(4):1071–1080

    CAS  Google Scholar 

  • Kowaltowski AJ, Cosso RG, Campos CB, Fiskum G (2002) Effect of Bcl-2 overexpression on mitochondrial structure and function. J Biol Chem 277(45):42802–42807. doi:10.1074/jbc.M207765200

    Article  CAS  Google Scholar 

  • Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47(4):333–343. doi:10.1016/j.freeradbiomed.2009.05.004, Research Support, Non-U.S. Gov’t Review

    Article  CAS  Google Scholar 

  • Lee AG (1976) Model for action of local anaesthetics. Nature 262(5569):545–548

    Article  CAS  Google Scholar 

  • Moczulski D, Majak I, Mamczur D (2009) An overview of beta-oxidation disorders. Postepy Hig Med Dosw (Online) 63:266–277, Review

    Google Scholar 

  • Mokhova EN, Khailova LS (2005) Involvement of mitochondrial inner membrane anion carriers in the uncoupling effect of fatty acids. Biochemistry (Mosc) 70(2):159–163, Review

    Article  CAS  Google Scholar 

  • Nicholls DG (2004) Mitochondrial membrane potential and aging. Aging Cell 3(1):35–40, Review

    Article  CAS  Google Scholar 

  • Rinaldo P, Matern D, Bennett MJ (2002) Fatty acid oxidation disorders. Annu Rev Physiol 64:477–502. doi:10.1146/annurev.physiol.64.082201.154705

    Article  CAS  Google Scholar 

  • Rottenberg H, Hashimoto K (1986) Fatty acid uncoupling of oxidative phosphorylation in rat liver mitochondria. Biochemistry 25(7):1747–1755, Comparative Study Research Support, U.S. Gov’t, P.H.S.

    Article  CAS  Google Scholar 

  • Sander J, Sander S, Steuerwald U, Janzen N, Peter M, Wanders RJ et al (2005) Neonatal screening for defects of the mitochondrial trifunctional protein. Mol Genet Metab 85(2):108–114. doi:10.1016/j.ymgme.2005.02.002, Case Reports

    Article  CAS  Google Scholar 

  • Schonfeld P (1992) Anion permeation limits the uncoupling activity of fatty acids in mitochondria. FEBS Lett 303(2–3):190–192, In Vitro

    Article  CAS  Google Scholar 

  • Schönfeld P, Struy H (1999) Refsum disease diagnostic marker phytanic acid alters the physical state of membrane proteins of liver mitochondria. FEBS Lett 457(2):179–183

    Article  Google Scholar 

  • Schonfeld P, Schild L, Kunz W (1989) Long-chain fatty acids act as protonophoric uncouplers of oxidative phosphorylation in rat liver mitochondria. Biochim Biophys Acta 977(3):266–272, Comparative Study

    Article  CAS  Google Scholar 

  • Scriver CR, Beaudet AL, Sky WS (2001) The metabolic and molecular bases of inherited disease. New York

  • Skulachev VP (1998) Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta 1363(2):100–124

    Article  CAS  Google Scholar 

  • Spiekerkoetter U, Mueller M, Cloppenburg E, Motz R, Mayatepek E, Bueltmann B et al (2008) Intrauterine cardiomyopathy and cardiac mitochondrial proliferation in mitochondrial trifunctional protein (TFP) deficiency. Mol Genet Metab 94(4):428–430. doi:10.1016/j.ymgme.2008.04.002, Case Reports

    Article  CAS  Google Scholar 

  • Tonin AM, Grings M, Busanello EN, Moura AP, Ferreira GC, Viegas CM et al (2010a) Long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies induce oxidative stress in rat brain. Neurochem Int 56(8):930–936. doi:10.1016/j.neuint.2010.03.025, Research Support, Non-U.S. Gov’t

    Article  CAS  Google Scholar 

  • Tonin AM, Ferreira GC, Grings M, Viegas CM, Busanello EN, Amaral AU et al (2010b) Disturbance of mitochondrial energy homeostasis caused by the metabolites accumulating in LCHAD and MTP deficiencies in rat brain. Life Sci 86(21–22):825–831. doi:10.1016/j.lfs.2010.04.003, Research Support, Non-U.S. Gov’t

    Article  CAS  Google Scholar 

  • Tyni T, Majander A, Kalimo H, Rapola J, Pihko H (1996) Pathology of skeletal muscle and impaired respiratory chain function in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency with the G1528C mutation. Neuromuscul Disord 6(5):327–337, Research Support, Non-U.S. Gov’t

    Article  CAS  Google Scholar 

  • Ventura FV, Ruiter JP, Ijlst L, Almeida IT, Wanders RJ (1995) Inhibition of oxidative phosphorylation by palmitoyl-CoA in digitonin permeabilized fibroblasts: implications for long-chain fatty acid beta-oxidation disorders. Biochim Biophys Acta 1272(1):14–20, Research Support, Non-U.S. Gov’t

    Article  Google Scholar 

  • Ventura FV, Ruiter JP, Ijlst L, de Almeida IT, Wanders RJ (1996) Inhibitory effect of 3-hydroxyacyl-CoAs and other long-chain fatty acid beta-oxidation intermediates on mitochondrial oxidative phosphorylation. J Inherit Metab Dis 19(2):161–164, Research Support, Non-U.S. Gov’t

    Article  CAS  Google Scholar 

  • Ventura FV, Ruiter JP, L, IJ, de Almeida IT, Wanders RJ (1998) Lactic acidosis in long-chain fatty acid beta-oxidation disorders. [Research Support, Non-U.S. Gov’t]. J Inherit Metab Dis 21(6):645–654.

    Google Scholar 

  • Ventura FV, Ruiter J, Ijlst L, de Almeida IT, Wanders RJ (2005) Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects. Mol Genet Metab 86(3):344–352. doi:10.1016/j.ymgme.2005.07.030, In Vitro

    Article  CAS  Google Scholar 

  • Ventura FV, Tavares de Almeida I, Wanders RJ (2007) Inhibition of adenine nucleotide transport in rat liver mitochondria by long-chain acyl-coenzyme A beta-oxidation intermediates. Biochem Biophys Res Commun 352(4):873–878. doi:10.1016/j.bbrc.2006.11.109

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacir Wajner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tonin, A.M., Amaral, A.U., Busanello, E.N.B. et al. Long-chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart mitochondria. J Bioenerg Biomembr 45, 47–57 (2013). https://doi.org/10.1007/s10863-012-9481-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-012-9481-9

Keywords

Navigation