Skip to main content
Log in

Can a death signal half-life be used to sense the distance to a lesion site in axons?

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Neuron response to injury depends on the distance to the lesion site, which means that neurons are capable of sensing this distance. Several mechanisms explaining how neurons can do this have been proposed and it is possible that neurons use a combination of several mechanisms to make such measurements. In this paper we investigate the feasibility of the simplest mechanism, which is based on the hypothesis that death signals, produced at the lesion site, propagate toward the neuron soma. The signals are propelled by dynein motors. If signals have a finite half-life, they decay as they propagate. By measuring the concentration of death signals arriving to the soma, neurons should thus be able to determine the distance to the injury site. We develop and solve a transport equation based on the above model. We investigate how a death signal distribution depends on the dynein velocity distribution. We evaluate the efficiency of such a mechanism by investigating the sensitivity of death signal concentration at the soma to the distance to the injury site. By using the hypothesis that system performance is optimized by evolution, we evaluate death signal half-lives that would maximize this sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coggan, J.S., Ocker, G.K., Sejnowski, T.J., Prescott, S.A.: Explaining pathological changes in axonal excitability through dynamical analysis of conductance-based models. J. Neural Eng. 8, 065002 (2011)

    Article  ADS  Google Scholar 

  2. Volman, V., Ng, L.J.: Computer modeling of mild axonal injury: implications for axonal signal transmission. Neural Comput. 25, 2646–2681 (2013)

    Article  Google Scholar 

  3. Boucher, P., Joos, B., Morris, C.E.: Coupled left-shift of Nav channels: modeling the Na+−loading and dysfunctional excitability of damaged axons. J. Comput. Neurosci. 33, 301–319 (2012)

  4. Kuznetsov, I.A., Kuznetsov, A.V.: Modelling organelle transport after traumatic axonal injury. Comput. Methods Biomech. Biomed. Eng. (2013). doi:10.1080/10255842.2013.820721

    Google Scholar 

  5. Medana, I., Esiri, M.: Axonal damage: a key predictor of outcome in human CNS diseases. Brain 126, 515–530 (2003)

    Article  Google Scholar 

  6. Cancalon, P.F.: Survival and subsequent regeneration of olfactory neurons after a distal axonal lesion. J. Neurocytol. 16, 829–841 (1987)

    Article  Google Scholar 

  7. You, S., So, K., Yip, H.: Axonal regeneration of retinal ganglion cells depending on the distance of axotomy in adult hamsters. Invest. Ophthalmol. Vis. Sci. 41, 3165–3170 (2000)

    Google Scholar 

  8. Shin, J.E., Miller, B.R., Babetto, E., Cho, Y., Sasaki, Y., Qayum, S., Russler, E.V., Cavalli, V., Milbrandt, J., DiAntonio, A.: SCG10 is a JNK target in the axonal degeneration pathway. Proc. Natl. Acad. Sci. U. S. A. 109, E3696–E3705 (2012)

    Article  ADS  Google Scholar 

  9. Bollenbach, T., Kruse, K., Pantazis, P., Gonzalez-Gaitan, M., Julicher, F.: Robust formation of morphogen gradients. Phys. Rev. Lett. 94, 018103 (2005)

    Article  ADS  Google Scholar 

  10. Lander, A.D.: How cells know where they are. Science 339, 923–927 (2013)

    Article  ADS  Google Scholar 

  11. Rishal, I., Fainzilber, M.: Axon-soma communication in neuronal injury. Nat. Rev. Neurosci. 15, 32–42 (2014)

    Article  Google Scholar 

  12. Kam, N., Pilpel, Y., Fainzilber, M.: Can molecular motors drive distance measurements in injured neurons? Plos Comput. Biol. 5, e1000477 (2009)

    Article  ADS  Google Scholar 

  13. Kuznetsov, A.V.: An analytical solution describing the propagation of positive injury signals in an axon: effect of dynein velocity distribution. Comput. Methods Biomech. Biomed. Eng. 16, 699–706 (2013)

    Article  Google Scholar 

  14. Rishal, I., Kam, N., Perry, R.B., Shinder, V., Fisher, E.M.C., Schiavo, G., Fainzilber, M.: A motor-driven mechanism for cell-length sensing. Cell Rep. 1, 608–616 (2012)

    Article  Google Scholar 

  15. Albus, C.A., Rishal, I., Fainzilber, M.: Cell length sensing for neuronal growth control. Trends Cell Biol. 23, 305–310 (2013)

    Article  Google Scholar 

  16. Prilloff, S., Henrich-Noack, P., Sabel, B.A.: Recovery of axonal transport after partial optic nerve damage is associated with secondary retinal ganglion cell death in vivo. Invest. Ophthalmol. Vis. Sci. 53, 1460–1466 (2012)

    Article  Google Scholar 

  17. Fernandes, K.A., Harder, J.M., Fornarola, L.B., Freeman, R.S., Clark, A.F., Pang, I., John, S.W.M., Libby, R.T.: JNK2 and JNK3 are major regulators of axonal injury-induced retinal ganglion cell death. Neurobiol. Dis. 46, 393–401 (2012)

    Article  Google Scholar 

  18. Michaelevski, I., Segal-Ruder, Y., Rozenbaum, M., Medzihradszky, K.F., Shalem, O., Coppola, G., Horn-Saban, S., Ben-Yaakov, K., Dagan, S.Y., Rishal, I., Geschwind, D.H., Pilpel, Y., Burlingame, A.L., Fainzilber, M.: Signaling to transcription networks in the neuronal retrograde injury response. Sci. Signal. 3, ra53 (2010)

    Article  Google Scholar 

  19. Rishal, I., Fainzilber, M.: Retrograde signaling in axonal regeneration. Exp. Neurol. 223, 5–10 (2010)

    Article  Google Scholar 

  20. Giza, C., Hovda, D.: The neurometabolic cascade of concussion. J. Athl. Train. 36, 228–235 (2001)

    Google Scholar 

  21. Smith, D.A., Simmons, R.M.: Models of motor-assisted transport of intracellular particles. Biophys. J. 80, 45–68 (2001)

    Article  ADS  Google Scholar 

  22. Ibanez, C.F.: Message in a bottle: long-range retrograde signaling nervous system. Trends Cell Biol. 17, 519–528 (2007)

    Article  Google Scholar 

  23. Murphy, J.E., Padilla, B.E., Hasdemir, B., Cottrell, G.S., Bunnett, N.W.: Endosomes: a legitimate platform for the signaling train. Proc. Natl. Acad. Sci. U. S. A. 106, 17615–17622 (2009)

    Article  ADS  Google Scholar 

  24. Miaczynska, M., Bar-Sagi, D.: Signaling endosomes: seeing is believing. Curr. Opin. Cell Biol. 22, 535–540 (2010)

    Article  Google Scholar 

  25. Schmieg, N., Menendez, G., Schiavo, G., Terenzio, M.: Signalling endosomes in axonal transport: travel updates on the molecular highway. Semin. Cell Dev. Biol. 27, 32–43 (2014)

  26. Swaminathan, R., Hoang, C., Verkman, A.: Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys. J. 72, 1900–1907 (1997)

    Article  Google Scholar 

  27. Cui, B., Wu, C., Chen, L., Ramirez, A., Bearer, E.L., Li, W., Mobley, W.C., Chu, S.: One at a time, live tracking of NGF axonal transport using quantum dots. Proc. Natl. Acad. Sci. U. S. A. 104, 13666–13671 (2007)

    Article  ADS  Google Scholar 

  28. Zhang, K., Osakada, Y., Vrljic, M., Chen, L., Mudrakola, H.V., Cui, B.: Single-molecule imaging of NGF axonal transport in microfluidic devices. Lab Chip 10, 2566–2573 (2010)

    Article  Google Scholar 

  29. Chowdary, P.D., Che, D.L., Cui, B.: Neurotrophin signaling via long-distance axonal transport. Annu. Rev. Phys. Chem. 63, 571–594 (2012)

    Article  ADS  Google Scholar 

  30. Berg, J.M., Tymoczko, J.L., Stryer, L.: Biochemistry, 5th edn. W H Freeman, New York (2002)

    Google Scholar 

  31. Coleman, M.: Molecular signaling: How do axons die? Adv. Genet. 73, 185–217 (2011)

    Article  Google Scholar 

  32. Ross, J.L., Wallace, K., Shuman, H., Goldman, Y.E., Holzbaur, E.L.F.: Processive bidirectional motion of dynein-dynactin complexes in vitro. Nat. Cell Biol. 8, 562–570 (2006)

    Article  Google Scholar 

  33. Deinhardt, K., Salinas, S., Verastegui, C., Watson, R., Worth, D., Hanrahan, S., Bucci, C., Schiavo, G.: Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron 52, 293–305 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

AVK gratefully acknowledges the support of the Alexander von Humboldt Foundation though the Humboldt Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, I.A., Kuznetsov, A.V. Can a death signal half-life be used to sense the distance to a lesion site in axons?. J Biol Phys 41, 23–35 (2015). https://doi.org/10.1007/s10867-014-9363-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-014-9363-y

Keywords

Navigation