Skip to main content
Log in

Optical properties of the red tide in Isahaya Bay, southwestern Japan: Influence of chlorophyll a concentration

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Remote sensing reflectance [R rs(λ)] and absorption coefficients of red tides were measured in Isahaya Bay, southwestern Japan, to investigate differences in the optical properties of red tide and non-red tide waters. We defined colored areas of the sea surface, visualized from shipboard, as “red tides”. Peaks of the R rs(λ) spectra of non-red tide waters were at 565 nm, while those of red tides shifted to longer wavelengths (589 nm). The spectral shape of R rs(λ) was close to that of the reciprocal of the total absorption coefficient [1/a(λ)], implying that the R rs(λ) peak is determined by absorption. Absorption coefficients of phytoplankton [a ph(λ)], non-pigment particles and colored dissolved organic matter increased with increasing chlorophyll a concentration (Chl a), and those coefficients were correlated with Chl a for both red tide and non-red tide waters. Using these relationships between absorption coefficients and Chl a, variation in the spectrum of 1/a(λ) as a function of Chl a was calculated. The peak of 1/a(λ) shifted to longer wavelengths with increasing Chl a. Furthermore, the relative contribution of a ph(λ) to the total absorption in red tide water was significantly higher than in non-red tide water in the wavelength range 550–600 nm, including the peak. Our results show that the variation of a ph(λ) with Chl a dominates the behavior of the R rs(λ) peak, and utilization of R rs(λ) peaks at 589 and 565 nm may be useful to discriminate between red tide and non-red tide waters by remote sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, Y. H., P. Shanmugam, J. H. Ryu and J. C. Jeong (2006): Satellite detection of harmful algal bloom occurrences in Korean waters. Harmful Algae, 5, 213–231.

    Article  Google Scholar 

  • Austin, R. W. (1974): The remote sensing of spectral radiance from below the ocean surface. p. 317–344. In Optical Aspects of Oceanography, ed. by N. G. Jerlov and E. S. Nielsen, Academic Press, London.

    Google Scholar 

  • Babin, M., D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky and N. Hoeffner (2003): Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J. Geophys. Res., 108, doi:10.1029/2001JC000882.

    Article  Google Scholar 

  • Bricaud, A., M. Babin, A. Morel and H. Claustre (1995): Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization. J. Geophys. Res., 100, 13321–13332.

    Article  Google Scholar 

  • Bricaud, A., A. Morel, M. Babin, K. Allali and H. Claustre (1998): Variations of light absorption by susupended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models. J. Geophys. Res., 103, 31033–31044.

    Article  Google Scholar 

  • Bricaud, A., H. Claustre, J. Ras and K. Oubelkheir (2004): Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations. J. Geophys. Res., 109, doi: 10.1029/2004JC002419.

  • Bukata, R. P., J. H. Jerome, K. Y. Kondratyev and D. V. Pozdnyakov (1995): Optical Properties and Remote Sensing of Inland and Coastal Waters. CRC Press, Florida, 362 pp.

    Google Scholar 

  • Carder, K. L. and R. G. Steward (1985): A remote-sensing reflectance model of red-tide dinoflagellate off west Florida. Limnol. Oceanogr., 30, 286–298.

    Article  Google Scholar 

  • Cleveland, J. S. and A. D. Weidemann (1993): Quantifying absorption by aquatic particles: a multiple scattering correction for glass fiber filters. Limnol. Oceanogr., 38, 1321–1327.

    Article  Google Scholar 

  • Cota, G. F., W. G. Harrison, T. Platt, S. Sathyendranath and V. Stuart (2003): Bio-optical properties of the Labrador Sea. J. Geophys. Res., 108, doi:10.1029/2000JC000597.

    Article  Google Scholar 

  • Craig, S. E., S. E. Lohrenz, Z. P. Lee, K. L. Mahoney, G. J. Kirkpatrick, O. M. Schofield and R. G. Steward (2006): Use of hyperspectral remote sensing reflectance for detection and assessment of the harmful alga, Karenia brevis. Appl. Opt., 21, 5414–5425.

    Article  Google Scholar 

  • Cullen, J. J., A. M. Ciotti, R. F. Davis and M. R. Lewis (1997): Optical detection and assessment of algal blooms. Limnol. Oceanogr., 42, 1223–1239.

    Article  Google Scholar 

  • Dierssen, H. M., R. M. Kudela, J. P. Ryan and R. C. Zimmerman (2006): Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments. Limnol. Oceanogr., 51, 2646–2659.

    Article  Google Scholar 

  • Duysens, L. N. M. (1956): The flattening of the absorption spectrum of suspensions, as compared to that of solutions. Biochim. Biophys. Acta, 19, 1–19.

    Article  Google Scholar 

  • Gitelson, A. (1992): The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens., 13, 3367–3373.

    Article  Google Scholar 

  • Gordon, H. R. and A. Morel (1983): Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery. Springer-Verlag, New York, 114 pp.

    Book  Google Scholar 

  • Gordon, H. R., O. B. Brown and M. M. Jacobs (1975): Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean. Appl. Opt., 14, 417–427.

    Article  Google Scholar 

  • Gower, J. F. R. and G. A. Borstad (2004): On the potential of MODIS and MERIS for imaging chlorophyll fluorescence from space. Int. J. Remote Sens., 25, 1459–1464.

    Article  Google Scholar 

  • Gower, J., S. King, G. Borstad and L. Brown (2005): Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. Int. J. Remote Sens., 26, 2005–2012.

    Article  Google Scholar 

  • Hallegraeff, G. M. (1995): Harmful algal blooms: A global overview. p. 1–22. In Manual on Harmful Marine Microalgae, ed. by G. M. Hallegraeff, D. A. Anderson and A. D. Cembella, IOC Manual and Guides, 33, UNESCO.

  • IOCCG (2000): Remote sensing of ocean colour in coastal, and other optically-complex, waters. In Reports of the International Ocean-Colour Coordinating Group, 3, ed. by S. Sathyendranath, IOCCG, Dartmouth, Canada.

    Google Scholar 

  • Ishizaka, J., Y. Kitaura, Y. Touke, H. Sasaki, A. Tanaka, H. Murakami, T. Suzuki, K. Matsuoka and H. Nakata (2006): Satellite detection of red tide in Ariake sound, 1998–2001. J. Oceanogr., 62, 37–45.

    Article  Google Scholar 

  • Kahru, M. and B. G. Mitchell (1998): Spectral reflectance and absorption of a massive red tide off southern California. J. Geophys. Res., 103, 21601–21609.

    Article  Google Scholar 

  • Kirk, J. T. O. (1975): A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters, II, Spherical cells. New Phytol., 75, 21–36.

    Article  Google Scholar 

  • Kirk, J. T. O. (1976): A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters, III, Cylindrical and spheroidal cells. New Phytol., 77, 341–358.

    Article  Google Scholar 

  • Kishino, M., M. Takahashi, N. Okami and S. Ichimura (1985): Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bul. Mar. Sci., 37, 634–642.

    Google Scholar 

  • Lee, Z. P., K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock and C. O. Davis (1994): Modeling for interpretation of hyperspectral remote-sensing reflectance. Appl. Opt., 33, 5721–5732.

    Article  Google Scholar 

  • Mobley, C. D. (1994): Light and Water: Radiative Transfer in Natural Waters. Academic Press, 592 pp.

  • Morel, A. (1988): Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). J. Geophys. Res., 93, 10749–10768.

    Article  Google Scholar 

  • Morel, A. and A. Bricaud (1981): Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Res., 28, 1375–1393.

    Article  Google Scholar 

  • Morel, A. and B. Gentili (1993): Diffuse reflectance of oceanic waters. II. bidirectional aspects. Appl. Opt., 32, 6864–6879.

    Article  Google Scholar 

  • Morel, A. and L. Prieur (1977): Analysis of variations in ocean color. Limnol. Oceanogr., 22, 709–722.

    Article  Google Scholar 

  • Mueller, J. L., G. S. Fargion and C. R. McClain (eds.) (2002): Ocean optics protocols for satellite ocean color sensor validation, IV, NASA Tech. Memo. 2003-211621, NASA Goddard Space Flight Center, Greenbelt, Maryland, 76 pp.

    Google Scholar 

  • Okamura, K., K. Tanaka, K. Kimoto and Y. Kiyomoto (2006): Distribution of organic matter and organic carbon stable isotope ratios in the surface sediments of inner Ariake Bay and Isahaya Bay, Japan. Umi no Kenkyu, 15, 201–206 (in Japanese with English abstract).

    Google Scholar 

  • Prieur, L. and S. Sathyendranath (1981): An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials. Limnol. Oceanogr., 26, 671–689.

    Article  Google Scholar 

  • Reynolds, R. A., D. Stramski and B. G. Mitchell (2001): A chlorophyll-dependent semianalytical reflectance model derived from field measurements of absorption and backscattering coefficients within the Southern Ocean. J. Geophys. Res., 106, 7125–7138.

    Article  Google Scholar 

  • Sasaki, H., T. Miyamura, S. Saitoh and J. Ishizaka (2005): Seasonal variation of absorption by particles and colored dissolved organic matter (CDOM) in Funka Bay, southwestern Hokkaido, Japan. Est. Coast. Shelf Sci., 64, 447–458.

    Article  Google Scholar 

  • Smith, R. C. and K. S. Baker (1981): Optical properties of the clearest natural waters (200–800 nm). Appl. Opt., 20, 177–184.

    Article  Google Scholar 

  • Suzuki, R. and T. Ishimaru (1990): An improved method for the determination of phytoplankton chlorophyll using N,N-dimethylformamide. J. Oceanogr. Soc. Japan, 46, 190–194.

    Article  Google Scholar 

  • Wang, J., G. F. Cota and D. A. Ruble (2005): Absorption and backscattering in the Beaufort and Chukchi Seas. J. Geophys. Res., 110, doi:10.1029/2002JC001653.

    Google Scholar 

  • Yentsch, C. S. (1989): Monitoring algal blooms, the use of satellites and other remote sensing devices. p. 181–184. In Red Tides: Biology, Environmental Science, and Toxicology, ed. by T. Okachi, D. M. Anderson and T. Nemoto, Proc. 1st Int. Symp. on Red Tides, Elsevier, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Sasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, H., Tanaka, A., Iwataki, M. et al. Optical properties of the red tide in Isahaya Bay, southwestern Japan: Influence of chlorophyll a concentration. J Oceanogr 64, 511–523 (2008). https://doi.org/10.1007/s10872-008-0043-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-008-0043-z

Keywords

Navigation