Skip to main content

Advertisement

Log in

Stable isotopic differences between summer and winter monsoon rains over southern India

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Rain drop size and isotopic composition of rain, important parameters that shed light on rain formation processes, are highly sensitive to the ambient weather. We reported earlier a significant correlation between them in individual rain events (with limited sampling), but this is yet to be tested with better, longer term sampling. Here we attempt to do so over a tropical region (i.e. Tirupati, India). Rain samples were collected at short time intervals (<1 h) to capture even small variations in their stable oxygen (δ18O) and hydrogen (δD) isotopic compositions. Isotopic analyses were made using an isotope ratio mass spectrometer, and a disdrometer measured the drop size distribution. Summer rains show a progressive 18O & D depletion with time, while the winter rains fluctuate about a mean value. We find no definite correlation between the drop size and stable isotope ratios as was reported earlier, based on a smaller number of samples: the complexity of rain formation process and varying ambient weather conditions for individual rain events could be the reason. Further, there is no significant difference between the local meteoric water lines (δ18O- δD line) of summer and winter monsoon rains, though the intercepts in both the cases were significantly smaller than global meteoric waterline, suggesting significant strong influence of secondary evaporation. However, the winter rains are more depleted in D & 18O. Paleoclimate proxies such as δ18O of cave calcite or teak cellulose form this region need to be interpreted in terms of the relative seasonality of the rainfall rather than the total annual rain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angert, A., Lee, J.E., Yakir, D.: Seasonal variations in the isotopic composition of near-surface water vapour in the eastern Mediterranean. Tellus 60B, 674–684 (2008)

    Article  Google Scholar 

  • Atlas, D., Srivastava, R.C., Sekhon, R.S.: Doppler radar characterstics of precipitation at vertical incidence. Rev Geophys Space Phys 11, 1–35 (1973)

    Article  Google Scholar 

  • Atlas, D., Ulbrich, C.W., Marks Jr., F.D., Amitai, E., Williams, C.R.: Systematic variation of drop size and radar-rainfall relations. J Geophys Res 104, 6155–6169 (1999)

    Article  Google Scholar 

  • Baker, M.B.: Cloud microphysics and climate. Science 276, 1072–1078 (1997)

    Article  Google Scholar 

  • Barras, V., Simmonds, I.: Observation and modelling of stable water isotopes as diagnostics of rainfall dynamics over southeastern Australia. J Geophys Res 114, D23308 (2009)

    Article  Google Scholar 

  • Celle-Jeanton, H., Gonfiantini, R., Travi, Y., Sol, B.: Oxygen-18 variations of rainwater during precipitation: application of the rayleigh model to selected rainfalls in Southern France. J Hydrol 289, 165–177 (2004)

    Article  Google Scholar 

  • Clark, I.D., Fritz, P.: Environmental isotopes in hydrology. CRC Press, Boca Raton (1997)

    Google Scholar 

  • Craig, H.: Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12, 133–149 (1957)

    Article  Google Scholar 

  • Craig, H., Gordon, L.I.: Stable Isotope in Oceanographic Studies and Paleotemperatures. V.Lischi e Figli, Pisa, 122 (1965)

  • Dansgaard, W.: Stable isotopes in precipitation. Tellus 16, 436–468 (1964)

    Article  Google Scholar 

  • Delaygue, G., Bard, E., Rollion, C.: Oxygen isotope/salinity relationship in the north Indian Ocean. J Geophys Res 106(C3), 4565–4574 (2001)

    Article  Google Scholar 

  • Duplessy, J.C.: Century-scale events in monsoonal climate over the past 20000 years. Nature 364, 322–324 (1993)

    Article  Google Scholar 

  • Epstein, S., Mayeda, T.: Variation of O-18 content of water from natural sources. Geochim Cosmochim Acta 4, 213–224 (1953)

    Article  Google Scholar 

  • Foote, G.B., duToit, P.S.: Terminal velocities of raindrops aloft. J Appl Meteorol 8, 249–253 (1969)

    Article  Google Scholar 

  • Friedman, I., Redfield, A.C., Schoen, B., Harris, J.: The variation of deuterium content of natural waters in the hydrological cycle. Rev Geophy 2, 177–224 (1964)

    Article  Google Scholar 

  • Fudeyasu, H., Ichiyanagi, K., Sugimoto, A., Yoshimura, K., Ueta, A., Yamanaka, M.D., Ozawa, K.: Isotope ratios of precipitation and water vapor observed in typhoon Shanshan. J Geophys Res 113, D12113 (2008). doi:12110.11029/12007JD009313

    Article  Google Scholar 

  • Gat, J.R.: Oxygen and hydrogen isotope in hydrologic cycle. Annu Rev Earth Planet Sci 24, 225–262 (1996)

    Article  Google Scholar 

  • Gat, J.R., Matsui, E.: Atmospheric water balance in the Amazon basin: an isotopic evapotranspiration model. J Geophys Res 96(D7), 13,179–113,188 (1991)

    Article  Google Scholar 

  • Gonfiantini, R.: The d-notation and the mass-spectrometric measurement techniques. In: Gat, J.R., Gonfiantini, R. (eds.) IAEA, Vienna 1981. Stable Isotope Hydrology: deuterium and oxygen-18 in the water cycle, pp. 103–142

  • He, H., Smith, R.B.: Stable isotope composition of water vapor in the atmospheric boundary layer above the forests on New England. J Geophys Res 104(11), 657–611,673 (1999)

    Google Scholar 

  • Henderson-Sellers, A., McGuffie, K., Noone, D., Irannejad, P.: Using stable water isotopes to evaluate basin-scale simulations of surface water budgets. J Hydrometeorol 5, 805–822 (2004)

    Article  Google Scholar 

  • Joss, J., Waldvogel, A.: Raindrop size distribution and sampling size errors. J Atmos Sci 26, 566–569 (1969)

  • Jouzel, J.: Isotopes in cloud physics: multiphase and multistage condensation process, Handbook of environmental isotope geochemistry. Elsevier Sci New York 2(61–112) (1986)

  • Jouzel, J., Merlivat, L.: Deuterium and oxygen 18 in precipitation, modeling of the isotopic effects during snow formation. J Geophys Res 89(11), 749–711,757 (1984)

    Google Scholar 

  • Lee, X., Smith, R., Williams, J.: Water vapour 18O/16O isotope ratio in surface air in New England USA. Tellus 58B, 293–304 (2006)

    Article  Google Scholar 

  • Managave, S.R., Sheshshayee, M.S., Bhattacharyya, A., Ramesh, R.: Intra-annual variations of teak cellulose δ18O in Kerala, India: implications to the reconstruction of past summer and winter monsoon rains. Climate Dynam 37, 555–567 (2011)

    Article  Google Scholar 

  • Melivat, L., Jouzel, J.: Global climatic interpretation of deuterium-oxygen 18 relationship for precipitation. J Geophys Res 84, 5029–5033 (1979)

    Article  Google Scholar 

  • Ramesh, R.: High resolution Holocene monsoon records from different proxies: an assessment of their consistency. Curr Sci 81, 1432–1436 (2001)

    Google Scholar 

  • Ramesh, R., Managave, S.R., Lekshmy, P.R., Laskar, A.H., Yadava, M.G., Jani, R.A.: Comment on ‘Tracing the sources of wáter using stable isotopes: first results along the Mangalore-Udipi región, south-west coast of India. Rapid Commun Mass Sopectrom 26(7), 874–875 (2012)

    Article  Google Scholar 

  • Rao, T.N., Rao, D.N., Mohan, K., Raghavan, S.: Classification of tropical precipitating systems and associated Z-R relationships. J Geophys Res 106, 17699–17711 (2001)

    Article  Google Scholar 

  • Rao, T.N., Radhakrishna, B., Srivastava, R., Satyanarayana, T.M., Narayana Rao, D.N., Ramesh, R.: Inferring microphysical processes occurring in mesoscale convective systems from radar measurements and isotopic analysis. Geophys Res Lett 35, L09813 (2008). doi:09810.01029/02008GL033495

    Google Scholar 

  • Reddy, K.K.: Measurements of raindrop size distribution over Gadanki during southwest and north-east monsoon. Indian J Radio Space Phys 32, 286–295 (2003)

    Google Scholar 

  • Rindsberger, M., Jaffe, S., Rahamim, S., Gat, J.R.: Patterns of the isotopic composition of precipitation in time and space: data from the Israeli storm water collection program. Tellus 42B, 263–271 (1990)

    Article  Google Scholar 

  • Risi, C., Bony, S., Vimeux, F., Chong, M., Descroix, L.: Evolution of water stable isotopic composition of rain sampled along Sahelian squall lines. Q J Roy Meteorol Soc (2009). doi:10.1002/qj.1485

    Google Scholar 

  • Rozanski, K., Araguas-Araguas, L., Gonfiantini, R.: Isotopic patterns in modern global precipitation. In: Swart, P.K., Lohmann, K.C., McKenzie, J., Savin, S. (eds.) AGU, Washington, D. C. 1993. Climate Change in Continental Isotopic Records, pp. 1–36

  • Scholl, M.A., Giambelluca, T.W., Gingerich, S.B., Nullet, M.A., Loope, L.L.: Cloud water in windward and leeward mountain forests: the stable isotope signature of orographic cloud water. Water Resour Res 43, W12411 (2007)

    Google Scholar 

  • Sengupta, S., Sarkar, A.: Stable isotope evidence for dual (Arabian Sea and Bay of Bengal) vapour sources in monsoonal precipitation over North India. Earth Planet Sci Lett 250, 511–521 (2006)

    Article  Google Scholar 

  • Smith, J.A., Ackerman, A.S., Jensen, E.J., Toon, O.B.: Role of deep convection in establishing the isotopic composition of water vapor in the tropical transition layer. J Geophys Res 33, L06812 (2006)

    Google Scholar 

  • Srivastava, R., Ramesh, R., Prakash, S., Anilkumar, N., Sudhakar, M.: Oxygen isotope and salinity variations in the Indian sector of the Southern Ocean. Geophys Res Lett 34, L24603 (2007). doi:24610.21029/22007GL031790

    Article  Google Scholar 

  • Srivastava, R., Ramesh, R., Rao, T.N.: Relationship between stable isotope ratios and drop size distribution in tropical rainfall. J Atmos Chem 69(1), 23–31 (2012)

    Article  Google Scholar 

  • Tokay, A., Short, D.A.: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J Appl Meteorol 35, 355–371 (1996)

    Article  Google Scholar 

  • Unnikrishnan Warrier, C., Praveen Babu, M., Manjula, P., Velayudhan, K.T., Shahul Hameed, A., Vasu, K.: Isotopic characterization of dual monsoon precipitation—evidence from Kerala. India Curr Sci 98(11), 1487–1495 (2010)

    Google Scholar 

  • Vuille, M., Bradley, R.S., Werner, M., Healy, R., Keimig, F.: Modeling δ18O in precipitation over the tropical Americas: 1. Interannual variability and climatic controls. J Geophys Res D: Atmos 108(6), 1–24 (2003)

    Google Scholar 

  • Wen, X.F., Sun, X.M., Zhang, S.C., Yu, G.R., Sargent, S.D., Lee, X.: Continuous measurement of water vapor D/H and 18O/16O isotope ratios in the atmosphere. J Hydrol 349, 489–500 (2008)

    Article  Google Scholar 

  • Yadava, M.G., Ramesh, R., Pant, G.B.: Past monsoon rainfall variations in peninsular India, recorded in a 331 year old speleothem. The Holocene 14(4), 517–524 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

We thank ISRO_GBP for funding. The air back trajectories are calculated using HYSPLIT model from http://ready.arl.noaa.gov/HYSPLIT.php.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, R., Ramesh, R. & Rao, T.N. Stable isotopic differences between summer and winter monsoon rains over southern India. J Atmos Chem 71, 321–331 (2014). https://doi.org/10.1007/s10874-015-9297-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-015-9297-1

Keywords

Navigation