Skip to main content
Log in

Ground-based observation of lightning-induced nitrogen oxides at a mountaintop in free troposphere

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Lightning is an important source of nitrogen oxides (LNOx). The actual global production of LNOx is still largely uncertain. One of the reasons for this uncertainty is the limited available observation data. We measured the concentrations of total reactive nitrogen (NOy), nitric oxide (NO) and nitrogen dioxides (NO2) and then obtained NOx oxidation products (NOz: NOz = NOy - NOx) at a station at the top of Mount Fuji (3776 m a.s.l.) during the summer of 2017. Increases in NOy and NO2 were observed on 22 August 2017. These peaks were unaccompanied by increases in CO, which suggested that the observed air mass did not contain emissions from combustion. The backward trajectories of the above air mass indicated that it moved across areas where lightning occurred. The NOy concentration was also calculated by using a chemical transport model, which did not take NOx produced by lightning into account. Therefore, the NOy concentration due to lightning can be inferred by subtracting the calculated NOy from the observed NOy concentrations. The concentration of NOy at 13:00 on 22 August 2017 originating from lightning was estimated to be 1.11 ± 0.02 ppbv, which comprised 97 ± 2% of the total NOy concentration. The fractions of NO2 and NOz in the total NOy were 0.54 ± 0.01 and 0.46 ± 0.03, respectively. The NO concentration was below the detection limit. We firstly observed increase of concentrations of NOy originating from lightning by ground-based observation and demonstrated the quantitative estimates of LNOx using model-based calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J.: IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation. Atmos. Chem. Phys. 4, 1461–1738 (2004)

    Article  Google Scholar 

  • Beirle, S., Spichtinger, N., Stohl, A., Cummins, K.L., Turner, T., Boccippio, D., Cooper, O.R., Wenig, M., Grzegorski, M., Platt, U., Wagner, T.: Estimating the NOx produced by lightning from GOME and NLDN data: a case study in the Gulf of Mexico. Atmos. Chem. Phys. 6, 1075–1089 (2006)

    Article  Google Scholar 

  • Beirle, S., Huntrieser, H., Wagner, T.: Direct satellite observation of lightning-produced NOx. Atmos. Chem. Phys. 10, 10965–10986 (2010)

    Article  Google Scholar 

  • Bhetanabhotla, M.N., Crowell, B.A., Coucouvinos, A., Hill, R.D., Rinker, R.G.: Simulation of trace species production by lightning and corona discharge in moist air. Atmos. Environ. 19, 1391–1397 (1985)

    Article  Google Scholar 

  • Braun, W., Herron, J.T., Kahaner, D.K.: ACUCHEM: A computer program for modeling complex chemical reaction systems. Int. J. Chem. Kinet. 20, 51–62 (1988)

    Article  Google Scholar 

  • Bucsela, E.J., Pickering, K.E., Huntemann, T.L., Cohen, R.C., Perring, A., Gleason, J.F., Blakeslee, R.J., Albrecht, R.I., Holzworth, R., Cipriani, J.P., Vatgas-Navarro, D., Mora-Segura, I., Pacheco-Hernández, A., Laporte-Molina, S.: Lightning-generated NOx seen by the ozone monitoring instrument during NASA’s tropical composition, cloud and climate coupling experiment (TC4). J. Geophys. Res. 115, D00J10 (2010). https://doi.org/10.1029/2009JD013118

    Article  Google Scholar 

  • Carter, W.: Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment. Final report to California Air Resources Board, Rep. 92–329, Univ. of Calif., Riverside, 8 May, 659 pp. (2000)

  • Cummings, K.A., Huntemann, T.L., Pickering, K.E., Barth, M.C., Skamarock, W.C., Höller, H., Betz, H.-D., Volz-Thomas, A., Schlager, H.: Cloud-resolving chemistry simulation of a Hector thunderstorm. Atmos. Chem. Phys. 13, 2757–2777 (2013)

    Article  Google Scholar 

  • DeCaria, A.J., Pickering, K.E., Stenchikov, G.L., Ott, L.E.: Lightning-generated NOx and its impact in tropospheric ozone production: A three-dimensional modeling study of a Stratosphere-Troposphere Experiment: Radiation, Aerosols and Ozone (STERAO-A) thunderstorm. J. Geophys. Res. 110, D14303 (2005). https://doi.org/10.1029/2004JD005556

    Article  Google Scholar 

  • Deushi, M., Shibata, K.: Development of an MRI Chemistry-Climate Model ver. 2 for the study of tropospheric and stratospheric chemistry. Pap. Meteor. Geophys. 62, 1–46 (2011)

    Google Scholar 

  • Dickerson, R.R.: Measurements of reactive nitrogen compounds in the free troposphere. Atmos. Environ. 18, 2585–2593 (1984)

    Article  Google Scholar 

  • Dickerson, R.R., Huffman, G.J., Luke, W.T., Nunnermacker, L.J., Pickering, K.E., Leslie, A.C.D., Lindsey, C.G., Slinn, W.G., Kelly, T.J., Daum, P.H., Delany, A.C., Greenberg, J.P., Zimmerman, P.R., Boatman, J.F., Ray, J.D., Stedman, D.H.: Thunderstorms: An important mechanism in the transport of air pollutants. Science. 235, 460–465 (1987)

    Article  Google Scholar 

  • Dowden, R.L., Brundell, J.B., Rodger, C.J.: VLF lightning location by time of group arrival (TOGA) at multiple sites. J. Atmos. Sol. Terr. Phys. 64, 817–830 (2002)

    Article  Google Scholar 

  • Drapcho, D.L., Sisterson, D., Kumar, R.: Nitrogen fixation by lightning activity in a thunderstorm. Atmos. Environ. 17, 729–734 (1983)

    Article  Google Scholar 

  • Draxler, R.R. and Rolph, G.D.: HYSPLIT (Hybrid Single-Particles Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website. NOAA Air Resources Laboratory, Silver Spring, MD. http://ready.arl.noaa.gov/HYSPLIT.php (2012). Accessed 30 April 2018

  • Finlayson-Pitts, B.J., Pitts, J.N.: Chemistry of the upper and lower atmosphere. Academic Press, San Diego (1999)

    Google Scholar 

  • Giglio, L., Randerson, J.T., van der Werf, G.R., Kasibhatla, P.S., Collatz, G.J., Morton, D.C., DeFries, R.S.: Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biorgeosciences. 7, 1171–1186 (2010)

    Article  Google Scholar 

  • Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I., Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 6, 3181–3210 (2006)

    Article  Google Scholar 

  • Huntrieser, H., Schlager, H., Feigl, C., Holler, H.: Transport and production of NOx in electrified thunderstorms: Survey of previous studies and new observations at midlatitudes. J. Geophys. Res. 103, 28247–28264 (1998)

    Article  Google Scholar 

  • Huntrieser, H., Feigl, C., Schlager, H., Schroder, F., Gerbig, C., van Velthoven, P., Flatoy, F., Thery, C., Petzold, A., Holler, H., Schumann, U.: Airborne measurements of NOx, tracer species, and small particles during the European Lightning Nitorgen Oxides Experiment. J. Geophys. Res. 107, (2002). https://doi.org/10.1029/2000JD000209

  • Huntrieser, H., Schlager, H., Roiger, A., Lichtenstern, M., Schumann, U., Kurz, C., Brunner, D., Schwierz, C., Richter, A., Stohl, A.: Lightning-produced NOx over Brazil during TROCCINOX: airborne measurements in tropical and subtropical thunderstorms and the importance of mesoscale convective systems. Atmos. Chem. Phys. 7, 2987–3013 (2007)

    Article  Google Scholar 

  • Huntrieser, H., Schumann, U., Schlager, H., Höller, H., Giez, A., Betz, H.-D., Brunner, D., Forster, C., Pinto Jr., O., and Calheiros, R.: Lightning activity in Brazilian thunderstorms during TROCCINOX: implications for NOx production. Atmos. Chem. Phys. 8, 921–953 (2008)

  • Huntrieser, H., Schlager, H., Lichtenstern, M., Roiger, A., Stock, P., Minikin, A., Höller, H., Schmidt, K., Betz, H.-D., Allen, G., Viciani, S., Ulanovsky, A., Ravegnani, F., Brunner, D.: NOx production by lightning in Hector: first airborne measurements during SCOUT-O3/ACTIVE. Atmos. Chem. Phys. 9, 8377–8412 (2009)

    Article  Google Scholar 

  • Huntrieser, H., Schlager, H., Lichtenstern, M., Stock, P., Hamburger, T., Höller, H., Schmidt., K., Betz, H.D., Ulanovsky, A., Ravegnani, F.: Mesoscale convective systems observed during AMMA and their impact on the NOx and O3 budget over West Africa. Atmos. Chem. Phys. 11, 2503–2536 (2011)

  • Jacob, D.J.: Heterogeneous chemistry and tropospheric ozone. Atmos. Environ. 34, 2131–2159 (2000)

    Article  Google Scholar 

  • Kajino, M., Deushi, M., Sekiyama, T.T., Oshima, N., Yumimoto, K., Tanaka, T.Y., Ching, J., Hashimoto, A., Yamamoto, T., Ikegami, M., Kamada, A., Miyashita, M., Inomata, Y., Shima, S., Adachi, K., Zaizen, Y., Igarashi, Y., Ueda, H., Maki, T., Mikami, M.: NHM-Chem, the Japan Meteorological Agency’s regional meteorology - chemistry model (v1.0): model description and aerosol representations. Geosci. Model Dev. Discuss. (2018). https://doi.org/10.5194/gmd-2018-128 in review

  • Kajino, M., Deushi, M., Sekiyama, T.T., Oshima, N., Yumimoto, K., Tanaka, T.Y., Ching, J., Hashimoto, A., Yamamoto, T., Ikegami, M., Kamada, A., Miyashita, M., Inomata, Y., Shima, S., Takami, A., Shimazu, A., Hatakeyama, S., Sadanaga, Y., Irie, H., Adachi, K., Zaizen, Y., Igarashi, Y., Ueda, H., Maki, T., Mikami, M.: NHM-Chem, the Japan Meteorological Agency’s regional meteorology - chemistry model: model evaluations toward the consistent predictions of the chemical, physical, and optical properties of aerosols. J. Meteor. Soc. Japan. (2019). https://doi.org/10.2151/jmsj.2019-020 in press

  • Kato, S., Shiobara, Y., Uchiyama, K., Miura, K., Okochi, H., Kobayashi, H., Hatakeyama, S.: Atmospheric CO, O3, and SO2 Measurements at the Summit of Mt. Fuji during the Summer of 2013. Aerosol Air Qual. Res. 16, 2368–2377 (2016)

    Article  Google Scholar 

  • Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., Takahashi, K.: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan. 93, 5–48 (2015)

    Article  Google Scholar 

  • Koike, M., Kondo, Y., Kita, K., Takegawa, N., Nishi, N., Kashihara, T., Kawakami, S., Kudoh, S., Blake, D., Shirai, T., Liley, B., Ko, M., Miyazaki, Y., Kawasaki, Z., Ogawa, T.: Measurements of reactive nitrogen produced by tropical thunderstorms during BIBLE-C. J. Geophys. Res. 112, (2007). https://doi.org/10.1029/2006JD008193

  • Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G., Fukui, T., Kawashima, K., Akimoto, H.: Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in Asia (REAS) version 2. Atmos. Chem. Phys. 13, 11019–11058 (2013)

    Article  Google Scholar 

  • Lin, J.T.: Satellite constraint for emissions of nitrogen oxides from anthropogenic, lightning and soil sources over East China on a high-resolution grid. Atmos. Chem. Phys. 12, 2881–2898 (2012)

    Article  Google Scholar 

  • Matsumi, Y., Murakami, S., Kono, M., Takahashi, K.: High-Sensitivity Instrument for Measuring Atmospheric NO2. Ana. Chem. 73, 5485–5493 (2001)

    Article  Google Scholar 

  • Miyazaki, K., Eskes, H.J., Sudo, K., Zhang, C.: Global lightning NOx production estimated by an assimilation of multiple satellite data sets. Atmos. Chem. Phys. 14, 3277–3305 (2014)

    Article  Google Scholar 

  • Nault, B.A., Laughner, J.L., Wooldridge, P.J., Crounse, J.D., Dibb, J., Diskin, G., Peischl, J., Podolske, J.R., Pollack, I.B., Ryerson, T.B., Scheuer, E., Wennberg, P.O., Cohen, R.C.: Lightning NOx emissions: reconciling measured and modeled estimates with updated NOx chemistry. Geopys. Res. Lett. 44, 9479–9488 (2017)

    Article  Google Scholar 

  • Nomura, S., Mukai, H., Terao, Y., Machida, T., Nojiri, Y.: Six years of atmospheric CO2 observations at Mt. Fuji recorded with a battery-powered measurement system. Atmos. Meas. Tech. 10, 667–680 (2017)

    Article  Google Scholar 

  • Ott, L.E., Pickering, K.E., Stenchikov, G.L., Huntrieser, H., Schumann, U.: Effects of lightning NOx production during the 21 July European Lightning Nitrogen Oxides Project storm studied with a three-dimensional cloud-scale chemical transport model. J. Geophys. Res. 112, D05307 (2007). https://doi.org/10.1029/2006JD007365

    Article  Google Scholar 

  • Ott, L.E., Pickering, K.E., Stenchikov, G.L., Allen, D.J., DeCaria, A.J., Ridley, B., Lin, R., Lang, S., Tao, W.: Production of lightning NOx and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations. J. Geophys. Res. 115, D04301 (2010). https://doi.org/10.1029/2009JD011880

    Google Scholar 

  • Pickering, K.E., Thompson, A.M., Wang, Y., Tao, W., McNamara, D.P., Kirchhoff, V.W.J.H., Heikes, B.G., Sachse, G.W., Bradshaw, J.D., Gregory, G.L., Blake, D.R.: Convective transport of biomass burning emissions over Brazil during TRACE A. J. Geophys. Res. 101, 23993–24012 (1996)

    Article  Google Scholar 

  • Pickering, K.E., Wang, Y., Tao, W., Price, C., Müller, J.: Vertical distributions of lightning NOx for use in regional and global chemical transport models. J. Geophys. Res. 103, 31203–31216 (1998)

    Article  Google Scholar 

  • Pickering, K.E., Bucsela, E., Allen, D., Ring, A., Holzworth, R., Krotkov, N.: Estimates of lightning NOx production based on OMI NO2 observations over the Gulf of Mexico. J. Geophys. Res. Atmos. 121, 8668–8691 (2016)

    Article  Google Scholar 

  • Reiter, R.: On the causal relation between nitrogen-oxygen compounds in the troposphere and atmospheric electricity. Tellus. 22, 122–135 (1970)

    Article  Google Scholar 

  • Ridley, B., Ott, L., Pickering, K., Emmons, L., Montzka, D., Weinheimer, A., Knapp, D., Grahek, F., Li, L., Heymsfield, G., McGill, M., Kucera, P., Mahoney, M.J., Baumgardner, D., Schultz, M., Brasseur, G.: Florida thunderstorms: A faucet of reactive nitrogen to the upper troposphere. J. Geophys. Res. 109, (2004). https://doi.org/10.1029/2004JD004769

  • Rodger, C.J., Werner, S., Brundell, J.B., Lay, E.H., Thomson, N.R., Holzworth, R.H., Dowden, R.L.: Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): initial case study. Ann. Geophys. 24, 3197–3214 (2006)

    Article  Google Scholar 

  • Rodger, C.J., Brundell, J.B., Holzworth, R.H., Lay, E.H.: Growing Detection Efficiency of the World Wide Lightning Location Network, Am. Inst. Phys. Conf. Proc., Coupling of thunderstorms and lightning discharges to near-Earth space: Proceedings of the Workshop, Corte (France), 23–27 June 2008, 15–20 (2009)

  • Rudlosky, S.D., Shea, D.T.: Evaluating WWLIN performance relative to TRMM/LIS. Geophys. Res. Lett. 40, (2013). https://doi.org/10.1002/grl.50428

  • Sadanaga, Y., Yuba, A., Kawakami, J., Takenaka, N., Yamamoto, M., Bandow, H.: A gaseous nitric acid analyzer for the remote atmosphere based on the scrubber difference/NO-ozone chemiluminescence method. Analytical Sciences. 24, 967–971 (2008)

    Article  Google Scholar 

  • Saito, K., Fujita, T., Yamada, Y., Ishida, J., Kumagai, Y., Aranami, K., Ohmori, S., Nagasawa, R., Kumagai, S., Muroi, C., Kato, T., Eito, H., Yamazaki, Y.: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev. 134, 1266–1298 (2006)

    Article  Google Scholar 

  • Schumann, U., Huntrieser, H.: The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 7, 3823–3907 (2007)

    Article  Google Scholar 

  • Slemr, F., Seiler, W.: Field Measurements of NO and NO2 Emissions from Fertilized and Unfertilized Soils. J. Atmos. Chem. 2, 1–24 (1984)

    Article  Google Scholar 

  • Taketani, F., Kawai, M., Takahashi, K., Matsumi, Y.: Trace detection of atmospheric NO2 by laser-induced fluorescence using a GaN diode laser and a diode-pumped YAG laser. Appl. Opt. 46, 907–915 (2007)

    Article  Google Scholar 

  • Tanaka, T.Y., Orito, K., Sekiyama, T.T., Shibata, T., Chiba, M., Tanaka, H.: MASINGAR, a global tropospheric aerosol chemical transport model coupled with MRI/JMA98 GCM: Model description. Pap. Meteor. Geophys. 53, 119–138 (2003)

    Article  Google Scholar 

  • Virts, K.S., Wallace, J.M., Hutchins, M.L., Holzworth, R.H.: Highlights of a new ground-based, hourly global lightning climatology. Bull. Am. Meteorol. Soc. 94, 1381–1391 (2013)

    Article  Google Scholar 

  • Wada, R., Orr-Ewing, A.J.: Continuous wave cavity ring-down spectroscopy measurement of NO2 mixing ratios in ambient air. Analyst. 130, 1595–1600 (2005)

    Article  Google Scholar 

  • Wada, R., Beames, J.M., Orr-Ewing, A.J.: Measurements of IO radical mixing ratios in the marine boundary layer using cavity ring down spectroscopy. J. Atmos. Chem. 58, 69–87 (2007)

    Article  Google Scholar 

  • Wada, R., Sadanaga, Y., Kato, S., Katsumi, N., Okochi, H., Iwamoto, Y., Miura, K., Kobayashi, H., Kamogawa, H., Matsumoto, J., Yonemura, S., Matsumi, Y., Kajino, M., Hatakeyama, S.: Development of an analytical method for the detection of NOz and its application to the atmospheric analysis at a mountain site. BUNSEKI KAGAKU. 67, 333–340 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant-in-Aid for Scientific Research (KAKENHI 16 K00520) and the Ichimura Foundation for new Technology. The authors wish to thank the World Wide Lightning Location Network (http://wwlln.net), collaboration among over 50 universities and institutions, for providing the lightning location data used in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuichi Wada.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wada, R., Sadanaga, Y., Kato, S. et al. Ground-based observation of lightning-induced nitrogen oxides at a mountaintop in free troposphere. J Atmos Chem 76, 133–150 (2019). https://doi.org/10.1007/s10874-019-09391-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-019-09391-4

Keywords

Navigation