Skip to main content

Advertisement

Log in

When Screening for Severe Combined Immunodeficiency (SCID) with T Cell Receptor Excision Circles Is Not SCID: a Case-Based Review

  • How I Manage
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Newborn screening efforts focusing on the quantification of T cell receptor excision circles (TRECs), as a biomarker for abnormal thymic production of T cells, have allowed for the identification and definitive treatment of severe combined immunodeficiency (SCID) in asymptomatic neonates. With the adoption of TREC quantification in Guthrie cards across the USA and abroad, typical, and atypical SCID constitutes only ~ 10% of cases identified with abnormal TRECs associated with T cell lymphopenia. Several other non-SCID-related conditions may be identified by newborn screening in a term infant. Thus, it is important for physicians to recognize that other factors, such as prematurity, are often associated with low TRECs initially, but often improve with age. This paper focuses on a challenge that immunologists face: the diagnostic evaluation and management of cases in which abnormal TRECs are associated with variants of T cell lymphopenia in the absence of a genetically defined form of typical or atypical SCID. Various syndromes associated with T cell impairment, secondary forms of T cell lymphopenia, and idiopathic T cell lymphopenia are identified using this screening approach. Yet there is no consensus or guidelines to assist in the evaluation and management of these newborns, despite representing 90% of the patients identified, resulting in significant work for the clinical teams until a diagnosis is made. Using a case-based approach, we review pearls relevant to the evaluation of these newborns, as well as the management dilemmas for the families and team related to the resolution of genetic ambiguities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chinn IK, Shearer WT. Severe combined immunodeficiency disorders. Immunol Allergy Clin N Am. 2015;35(4):671–94.

    Article  Google Scholar 

  2. Puck JM. Newborn screening for severe combined immunodeficiency and T-cell lymphopenia. Immunol Rev. 2019;287(1):241–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van der Burg M, Mahlaoui N, Gaspar HB, Pai SY. Universal newborn screening for severe combined immunodeficiency (SCID). Front Pediatr. 2019;7:373.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bifsha P, Leiding JW, Pai SY, Colamartino ABL, Hartog N, Church JA, et al. Diagnostic assay to assist clinical decisions for unclassified severe combined immune deficiency. Blood Adv. 2020;4(12):2606–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bosticardo M, Pala F, Calzoni E, Delmonte OM, Dobbs K, Gardner CL, et al. Artificial thymic organoids represent a reliable tool to study T-cell differentiation in patients with severe T-cell lymphopenia. Blood Adv. 2020;4(12):2611–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Amatuni GS, Currier RJ, Church JA, Bishop T, Grimbacher E, Nguyen AA, et al. Newborn screening for severe combined immunodeficiency and T-cell lymphopenia in California, 2010–2017. Pediatrics. 2019;143(2):e20182300.

    Article  PubMed  Google Scholar 

  7. Yska HAF, Elsink K, Kuijpers TW, Frederix GWJ, van Gijn ME, van Montfrans JM. Diagnostic yield of next generation sequencing in genetically undiagnosed patients with primary immunodeficiencies: a systematic review. J Clin Immunol. 2019;39(6):577–91.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mauracher AA, Pagliarulo F, Faes L, Vavassori S, Güngör T, Bachmann LM, et al. Causes of low neonatal T-cell receptor excision circles: a systematic review. J Allergy Clin Immunol Pract. 2017;5(5):1457–1460.e22.

    Article  PubMed  Google Scholar 

  9. Albin-Leeds S, Ochoa J, Mehta H, Vogel BH, Caggana M, Bonagura V, et al. Idiopathic T cell lymphopenia identified in New York state newborn screening. Clin Immunol. 2017;183:36–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Evans MO 2nd, McDermott DH, Murphy PM, Petersen MM. Abnormal newborn screen in a WHIM syndrome infant. J Clin Immunol. 2019;39(8):839–41. https://doi.org/10.1007/s10875-019-00686-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heusinkveld LE, Yim E, Yang A, Azani AB, Liu Q, Gao JL, et al. Pathogenesis, diagnosis and therapeutic strategies in WHIM syndrome immunodeficiency. Expert Opin Orphan Drugs. 2017;5(10):813–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dorsey M, Puck J. Newborn screening for severe combined immunodeficiency in the US: Current status and approach to management. Int J Neonatal Screen. 2017;3:15. https://doi.org/10.3390/ijns3020015.

    Article  PubMed  Google Scholar 

  13. Kobrynski LJ. Identification of severe combined immune deficiency T cell lymphopenia at newborn screening for severe combined immune deficiency. Ann Allergy Asthma Immunol. 2019;123:424–7. https://doi.org/10.1016/j.anai.2019.08.006.

    Article  PubMed  Google Scholar 

  14. Shearer WT, et al. Establishing diagnostic criteria for severe combined immunodeficiency disease (SCID), leaky SCID, and Omenn syndrome: the Primary Immune Deficiency Treatment Consortium experience. J Allergy Clin Immunol. 2014;133:1092–8. https://doi.org/10.1016/j.jaci.2013.09.044.

    Article  PubMed  Google Scholar 

  15. Dorsey MJ, Dvorak CC, Cowan MJ, Puck JM. Treatment of infants identified as having severe combined immunodeficiency by means of newborn screening. J Allergy Clin Immunol. 2017;139:733–42. https://doi.org/10.1016/j.jaci.2017.01.005.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fernandez IZ, Baxter RM, Garcia-Perez JE, Vendrame E, Ranganath T, Kong DS, et al. A novel human IL2RB mutation results in T and NK cell-driven immune dysregulation. J Exp Med. 2019;216:1255–67. https://doi.org/10.1084/jem.20182015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Picard C, Bobby Gaspar H, al-Herz W, Bousfiha A, Casanova JL, Chatila T, et al. International Union of Immunological Societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity. J Clin Immunol. 2018;38:96–128. https://doi.org/10.1007/s10875-017-0464-9.

    Article  PubMed  Google Scholar 

  18. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, Franco JL, Holland SM, Klein C, Morio T, Ochs HD, Oksenhendler E, Picard C, Puck J, Torgerson TR, Casanova JL, Sullivan KE. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2020 Jan;40(1):24–64.

  19. Dorsey MJ, Wright NAM, Chaimowitz NS, Dávila Saldaña BJ, Miller H, Keller MD, Thakar MS, Shah AJ, Abu-Arja R, Andolina J, Aquino V, Barnum JL, Bednarski JJ, Bhatia M, Bonilla FA, Butte MJ, Bunin NJ, Chandra S, Chaudhury S, Chen K, Chong H, Cuvelier GDE, Dalal J, DeFelice ML, DeSantes KB, Forbes LR, Gillio A, Goldman F, Joshi AY, Kapoor N, Knutsen AP, Kobrynski L, Lieberman JA, Leiding JW, Oshrine B, Patel KP, Prockop S, Quigg TC, Quinones R, Schultz KR, Seroogy C, Shyr D, Siegel S, Smith AR, Torgerson TR, Vander Lugt MT, Yu LC, Cowan MJ, Buckley RH, Dvorak CC, Griffith LM, Haddad E, Kohn DB, Logan B, Notarangelo LD, Pai SY, Puck J, Pulsipher MA, Heimall J. Infections in infants with SCID: Isolation, infection screening, and Prophylaxis in PIDTC Centers. J Clin Immunol. 2020.

  20. Selim MA, Markert ML, Burchette JL, Herman CM, Turner JW. The cutaneous manifestations of atypical complete DiGeorge syndrome: a histopathologic and immunohistochemical study. J Cutan Pathol. 2008;35(4):380–5.

    Article  PubMed  Google Scholar 

  21. Villa A, Santagata S, Bozzi F, Giliani S, Frattini A, Imberti L, et al. Partial V(D)J recombination activity leads to Omenn syndrome. Cell. 1998;93:885–96.

    Article  CAS  PubMed  Google Scholar 

  22. Wada T, Yasui M, Toma T, Nakayama Y, Nishida M, Shimizu M, et al. Detection of T lymphocytes with a second-site mutation in skin lesions of atypical X-linked severe combined immunodeficiency mimicking Omenn syndrome. Blood. 2008;112(5):1872–5.

    Article  CAS  PubMed  Google Scholar 

  23. Roifman CM, Zhang J, Atkinson A, Grunebaum E, Mandel K. Adenosine deaminase deficiency can present with features of Omenn syndrome. J Allergy Clin Immunol. 2008;121(4):1056–8.

    Article  CAS  PubMed  Google Scholar 

  24. Turul T, Tezcan I, Artac H, de Bruin-Versteeg S, Barendregt BH, Reisli I, et al. Clinical heterogeneity can hamper the diagnosis of patients with ZAP70 deficiency. Eur J Pediatr. 2009;168(1):87–93.

    Article  PubMed  Google Scholar 

  25. Ege M, Ma Y, Manfras B, Kalwak K, Lu H, Lieber MR, et al. Omenn syndrome due to ARTEMIS mutations. Blood. 2005;105(11):4179–86.

    Article  CAS  PubMed  Google Scholar 

  26. Grunebaum E, Bates A, Roifman CM. Omenn syndrome is associated with mutations in DNA ligase IV. J Allergy Clin Immunol. 2008;122(6):1219–20.

    Article  CAS  PubMed  Google Scholar 

  27. Gennery AR, Slatter MA, Rice J, Hoefsloot LH, Barge D, McLean-Tooke A, et al. Mutations in CHD7 in patients with CHARGE syndrome cause T-B + natural killer cell + severe combined immune deficiency and may cause Omenn-like syndrome. Clin Exp Immunol. 2008;153(1):75–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Giliani S, Bonfim C, de Saint Basile G, Lanzi G, Brousse N, Koliski A, et al. Omenn syndrome in an infant with IL7RA gene mutation. J Pediatr. 2006;148(2):272–4.

    Article  CAS  PubMed  Google Scholar 

  29. Muller SM, Ege M, Pottharst A, Schulz AS, Schwarz K, Friedrich W. Transplacentally acquired maternal T lymphocytes in severe combined immunodeficiency: a study of 121 patients. Blood. 2001;98(6):1847–51.

    Article  CAS  PubMed  Google Scholar 

  30. Mehr S, Hsu P, Campbell D. Immunodeficiency in CHARGE syndrome. Am J Med Genet C: Semin Med Genet. 2017;175(4):516–23.

    Article  Google Scholar 

  31. Yamazaki Y, Urrutia R, Franco LM, Giliani S, Zhang K, Alazami AM, et al. PAX1 is essential for development and function of the human thymus. Sci Immunol. 2020;5(44):eaax1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gallo V, Cirillo E, Giardino G, Pignata C. FOXN1 deficiency: from the discovery to novel therapeutic approaches. J Clin Immunol. 2017;37(8):751–8.

    Article  CAS  PubMed  Google Scholar 

  33. Bosticardo M, Yamazaki Y, Cowan J, Giardino G, Corsino C, Scalia G, et al. Heterozygous FOXN1 variants cause low TRECs and severe T cell lymphopenia, revealing a crucial role of FOXN1 in supporting early thymopoiesis. Am J Hum Genet. 2019;105(3):549–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Du Q, Huynh LK, Coskun F, Molina E, King MA, Raj P, et al. FOXN1 compound heterozygous mutations cause selective thymic hypoplasia in humans. Clin Invest. 2019;129(11):4724–38.

    Article  CAS  Google Scholar 

  35. Davies EG. Immunodeficiency in DiGeorge syndrome and options for treating cases with complete athymia. Front Immunol. 2013;4:322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Caglayan Sozmen S, Isik S, Arikan Ayyildiz Z, Yildiz K, Cakır Y, Ozer E, et al. Cyclosporin treatment improves skin findings in Omenn syndrome. Pediatr Dermatol. 2015;32(2):e54–7.

    Article  PubMed  Google Scholar 

  37. Land MH, Garcia-Lloret MI, Borzy MS, Rao PN, Aziz N, McGhee SA, et al. Long-term results of bone marrow transplantation in complete DiGeorge syndrome. J Allergy Clin Immunol. 2007;120(4):908–15.

    Article  CAS  PubMed  Google Scholar 

  38. Kelty WJ, Beatty SA, Wu S, Hanson IC, Demmler-Harrison GJ, Martinez CA, et al. The role of breast-feeding in cytomegalovirus transmission and hematopoietic stem cell transplant outcomes in infants with severe combined immunodeficiency. J Allergy Clin Immunol Pract. 2019;7(8):2863–2865.e3.

    Article  PubMed  Google Scholar 

  39. Walter JE, Heimall J. CMV-Seropositive Mothers of SCID: To Breastfeed or Not? J Allergy Clin Immunol Pract. 2019;7(8):2866–7.

    Article  PubMed  Google Scholar 

  40. Rosenfeld L, Mas Marques A, Niendorf S, Hofmann J, Gratopp A, Kühl JS, et al. Life-threatening systemic rotavirus infection after vaccination in severe combined immunodeficiency (SCID). Pediatr Allergy Immunol. 2017;28(8):841–3.

    Article  PubMed  Google Scholar 

  41. Bakare N, Menschik D, Tiernan R, Hua W, Martin D. Severe combined immunodeficiency (SCID) and rotavirus vaccination: reports to the Vaccine Adverse Events Reporting System (VAERS). Vaccine. 2010;28(40):6609–12.

    Article  PubMed  Google Scholar 

  42. Waters V, Peterson KS, LaRussa P. Live viral vaccines in a DiGeorge syndrome patient. Arch Dis Child. 2007;92(6):519–20.

    Article  CAS  PubMed  Google Scholar 

  43. Hofstetter AM, Jakob K, Klein NP, Dekker CL, Edwards KM, Halsey NA, et al. Live vaccine use and safety in DiGeorge syndrome. Pediatrics. 2014;133(4):e946–54.

    Article  PubMed  Google Scholar 

  44. Al-Sukaiti NR, Lavi B, Al-Zaharani S, Atkinson D, Roifman Chaim M, Grunebaum E. Safety and efficacy of measles, mumps, and rubella vaccine in patients with DiGeorge syndrome. J Allergy Clin Immunol. 2010;126(4):868–9.

    Article  PubMed  Google Scholar 

  45. El-Sayed ZA, Radwan N. Newborn screening for primary immunodeficiencies: the gaps, challenges, and outlook for developing countries. Front Immunol. 2020;10:2987.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Amatuni GS, Sciortino S, Currier RJ, Naides SJ, Church JA, Puck JM. Reference intervals for lymphocyte subsets in preterm and term neonates without immune defects. J Allergy Clin Immunol. 2019;144(6):1674–83.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Joyce S, Gordon K, Brice G, Ostergaard P, Nagaraja R, Short J, et al. The lymphatic phenotype in Noonan and cardiofaciocutaneous syndrome. Eur J Hum Genet. 2016;24(5):690–6.

    Article  CAS  PubMed  Google Scholar 

  48. Kuo CY, Garcia-Lloret MI, Slev P, Bohnsack JF, Chen K. Profound T cell Lymphopenia associated with prenatal exposure to purine antagonists detected by TREC newborn screening. J Allergy Clin Immunol Pract. 2017;5(1):198–200.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mancebo E, Clemente J, Sanchez J, Ruiz-Contreras J, De Pablos P, Cortezon S, et al. Longitudinal analysis of immune function in the first 3 years of life in thymectomized neonates during cardiac surgery. Clin Exp Immunol. 2008;154(3):375–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mattes M, Connor J, Kelly SS, Schwartz MC. Lymphopenia in patients with single-ventricle heart disease after the Fontan operation. Congenit Heart Dis. 2016;11(3):270–5.

    Article  PubMed  Google Scholar 

  51. Hoskote AU, Ramaiah RN, Cale CM, Hartley JC, Brown KL. Role of immunoglobulin supplementation for secondary immunodeficiency associated with chylothorax after pediatric cardiothoracic surgery. Pediatr Crit Care Med. 2012;13(5):535–41.

    Article  PubMed  Google Scholar 

  52. Devaney R, Pasalodos S, Suri M, Bush A, Bhatt JM. Ataxia telangiectasia: presentation and diagnostic delay. Arch Dis Child. 2017;102(4):328–30.

    Article  PubMed  Google Scholar 

  53. Berland A, Rosain J, Kaltenbach S, Allain V, Mahlaoui N, Melki I, et al. PROMIDISalpha: a T-cell receptor alpha 407 signature associated with immunodeficiencies caused by V(D)J recombination defects. J Allergy Clin Immunol. 2019;143(1):325–34 e322.

    Article  CAS  PubMed  Google Scholar 

  54. Purswani P, Meehan CA, Kuehn HS, Chang Y, Dasso JF, Meyer AK, et al. Two unique cases of X-linked SCID: a diagnostic challenge in the era of newborn screening. Front Pediatr. 2019;7:55.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mensa-Vilaró A, Bravo García-Morato M, de la Calle-Martin O, Franco-Jarava C, Martínez-Saavedra MT, González-Granado LI, et al. Unexpected relevant role of gene mosaicism in patients with primary immunodeficiency diseases. J Allergy Clin Immunol. 2019;143(1):359–68.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors helped draft and approved the submitted manuscript. CAC and DB coordinated the creation of the original draft manuscript. DB, MJB, WYC, VRD, MJD, DJN, JMP, JS, and CAC participated in regular teleconferences surrounding the diagnostic evaluation and treatment of the immune disorders depicted in each case. All authors helped review the literature and cases. JEW and MCL helped illustrate the manuscript with the accompanying tables.

Corresponding author

Correspondence to David Buchbinder.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchbinder, D., Walter, J.E., Butte, M.J. et al. When Screening for Severe Combined Immunodeficiency (SCID) with T Cell Receptor Excision Circles Is Not SCID: a Case-Based Review. J Clin Immunol 41, 294–302 (2021). https://doi.org/10.1007/s10875-020-00931-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-020-00931-2

Keywords

Navigation