Skip to main content
Log in

Microwave-Assisted One-Pot Synthesis of Octahydroquinazolinone Derivatives Using Molybdenum Oxide Nanoparticles in Solvent-Free Condition

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Molybdenum oxide nanoparticle has been shown to be an inexpensive, efficient and mild catalyst for the one-pot synthesis of octahydroquinazolinone derivatives using dimedone, urea/thiourea and appropriate aromatic aldehydes under microwave-irradiation. Molybdenum oxide nanoparticles were prepared by electrochemical reduction method in which parameters such as current density, solvent polarity, distance between electrodes, and concentration of stabilizers are used to control the size of nanoparticles.

Graphical Abstract

Molybdenum oxide nanoparticle has been shown to be an inexpensive, efficient and mild catalyst for the one-pot synthesis of octahydroquinazolinone derivatives using dimedone, urea/thiourea and appropriate aromatic aldehydes under microwave-irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Hassani, M. R. Islami, and M. Kalantari (2006). Bioorg. Med. Chem. Lett. 16, 4479.

    Article  CAS  Google Scholar 

  2. S. Sarac, M. Yarim, M. Ertan, F. Kilic, and K. Erol (2001). Pharmazie 56, 298.

    CAS  Google Scholar 

  3. V. V. Alagarsamy, U. S. Pathak, D. Sriram, S. N. Pandeya, and E. De Clercq (2000). Indian J. Pharm. Sci. 62, 433–437.

    Google Scholar 

  4. M. Yarim, S. Sarac, F. S. Kiliç, and K. Erol (2003). Farmaco 58, 17–24.

    Article  CAS  Google Scholar 

  5. N. K. Ladani, M. P. Patel, and R. G. Patel (2009). Arkivoc 7, 292–302.

    Article  Google Scholar 

  6. C. O. Kappe (2000). Eur. J. Med. Chem. 35, 1043–1052.

    Article  CAS  Google Scholar 

  7. M. M. Amini, A. Shaabani, and A. Bazgir (2006). Catal. Commun. 7, 843.

    Article  CAS  Google Scholar 

  8. A. Mobinikhaledi, N. Foroughifar, and H. Khodaei (2010). Eur. J. Chem. 1, (4), 291–293.

    Article  CAS  Google Scholar 

  9. A. Kuraitheerthakumaran, S. Pazhamalai, H. Manikandan, and M. Gopalakrishnan (2011). J. Saudi Chem. Soc. doi:10.1016/j.jscs.2011.11.014.

    Google Scholar 

  10. C. S. Reddy, M. Raghu, and A. Nagaraj (2009). Indian J. Chem. B 48, 1178–1182.

    Google Scholar 

  11. H. Lin, Q. Zhao, B. Xu, and X. Wang (2007). J. Mol. Catal. A 268, 221.

    Article  CAS  Google Scholar 

  12. Z. Hassani, M. R. Islami, and M. Kalantari (2006). Bioorg. Med. Chem. Lett. 16, 4479.

    Article  CAS  Google Scholar 

  13. M. Li, W. S. Guo, L. R. Wen, Y. F. Li, and H. Z. Yang (2006). J. Mol. Catal. A 258, 133.

    Article  CAS  Google Scholar 

  14. P. V. Badadhe, A. V. Chate, D. G. Hingane, P. S. Mahajan, N. M. Chavhan, and C. H. Gill (2011). J. Korean Chem. Soc. 55, 6.

    Article  Google Scholar 

  15. S. A. Matjetich and Y. Jin (1999). Science 284, 470.

    Article  Google Scholar 

  16. V. Russier, C. Petit, J. Legrand, and M. P. Pileni (2000). Phys. Rev. B 62, 3910.

    Article  CAS  Google Scholar 

  17. R. P. Andres, T. Bein, M. Dorogi, S. Feng, J. I. Henderson, C. P. Kubiak, W. Mahoney, R. G. Osifchin, and R. Reifenberger (1996). Science 272, 1323.

    Article  CAS  Google Scholar 

  18. C. Petit, T. Cren, D. Roditchev, W. Sacks, J. Klein, and M. P. Pileni (1999). Adv. Mater. 11, 1198.

    Article  CAS  Google Scholar 

  19. X. X. Zhang, H. Liu, K. K. Fung, and B. X. Qin (2000). Physica B 279, 185.

    Article  CAS  Google Scholar 

  20. S. H. Lee, M. J. Seong, C. E. Tracy, A. Mascarenhas, J. Roland Pitts, and K. Satyen Deb (2002). Solid State Ion. 147, 129.

    Article  CAS  Google Scholar 

  21. S. S. Mahajan, S. H. Mujawar, P. S. Shinde, A. I. Inamdar, and P. S. Patil (2008). Int. J. Electrochem. Sci. 3, 953.

    CAS  Google Scholar 

  22. X. Lou and H. Zeng (2002). Chem. Mater. 14, 4781.

    Article  CAS  Google Scholar 

  23. M. Chhowalla and G. A. J. Amaratunga (2000). Nature 407, 164.

    Article  CAS  Google Scholar 

  24. R. S. Patil, M. D. Uplane, and P. S. Patil (2008). Int. J. Electrochem. Sci. 3, 259.

    CAS  Google Scholar 

  25. A. P. Amrute, A. Bordoloi, N. Lucas, K. Palraj, and S. B. Halligudi (2008). Catal. Lett. 126, 286.

    Article  CAS  Google Scholar 

  26. C. H. Philip Mitchell (1986). J. Inorg. Biochem. 28, 107.

    Article  Google Scholar 

  27. L. X. Song, M. Wang, S. Z. Pan, J. Yang, J. Chen, and J. Yang (2011). J. Mater. Chem. 2, 7982.

    Article  Google Scholar 

  28. M. K. Dongare, V. V. Bhagwat, C. V. Ramana, and M. K. Gurjar (2004). Tetrahedron Lett. 45, 4759.

    Article  CAS  Google Scholar 

  29. J. S. Yadav and B. V. S. Reddy (2002). Tetrahedron Lett. 43, 1905–1907.

    Article  CAS  Google Scholar 

  30. A. Loupy, A. Petit, J. Hamelin, F. Texier-Boullet, P. Jacquault, and D. Mathe (1998). Synthesis 1998, 1213–1234.

    Article  Google Scholar 

  31. A. Loupy (2004). C. R. Chimie 7, 103–112.

    Article  CAS  Google Scholar 

  32. J. Li, L. Zhang, F. Peng, J. Bian, T. Yuan, F. Xu, and R. Sun (2009). Molecules 14, 3551–3566.

    Article  CAS  Google Scholar 

  33. L. X. Shao and M. Shi (2003). Adv. Synth. Catal. 345, 963–966.

    Article  CAS  Google Scholar 

  34. H. Durr and P. M. Fauchet (1997). Appl. Phys. Lett. 71, 380.

    Article  Google Scholar 

  35. R. Mortimer (1997). J. Chem. Soc. Rev. 26, 147.

    Article  CAS  Google Scholar 

  36. J. N. Yao, K. Hashimoto, and A. Fujishima (1992). Nature 355, 624.

    Article  CAS  Google Scholar 

  37. S. Li, I. N. Germanenko, and M. S. EI-Shell (1999). J. Clust. Sci. 10, 4

    Article  Google Scholar 

  38. Y. Liang, Z. Yi, S. Yang, L. Zhou, J. Sun, and Y. Zhou (2006). Solid State Ion. 177, 501.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad and UGC-SAP-DRS-1 scheme New Delhi for providing the laboratory facility. One of the author (ASR) is thankful for financial assistance from UGC Major Research Project, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali S. Rajbhoj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, S., Anandgaonker, P.L., Kulkarni, G. et al. Microwave-Assisted One-Pot Synthesis of Octahydroquinazolinone Derivatives Using Molybdenum Oxide Nanoparticles in Solvent-Free Condition. J Clust Sci 25, 1389–1399 (2014). https://doi.org/10.1007/s10876-014-0716-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0716-2

Keywords

Navigation