Skip to main content
Log in

Phase Transfer Induced Enhanced Stability of Monolayer Protected Silver Quantum Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Mercaptosuccinic acid (MSA) protected silver clusters (Ag@MSA) were synthesized and their stability was monitored both in an aqueous and in a toluene phase. In the former, the pH of the cluster solution was tuned between 3 and 10 using ammonium acetate buffer, and the cluster stability was tested. The clusters were unstable at all measured pH values, whereas in the toluene phase, by using sterically hindered counter ion (tertraoctylammonium, TOA), the stability of the clusters was improved significantly. The phase transferred clusters in the toluene phase showed very high stability over months at room temperature. Transmission electron microscopy images show an average cluster size of ~ 2.05 nm. Size exclusion chromatography and Electrospray Ionisation Mass Spectrometry (ESI–MS) measurements were employed to analyse the phase transferred clusters. Importantly, Ag4MSA4 type stable fragments were observed in ESI–MS measurements. The [Ag8(MSA)8(TOA)5]2− was the largest cluster identified by ESI–MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. Udayabhaskararao and T. Pradeep (2013). J. Phys. Chem. Lett. 4, 1553.

    Article  CAS  Google Scholar 

  2. S. Gao, D. Chen, Q. Li, J. Ye, H. Jiang, C. Amatore, and X. Wang (2014). Sci. Rep. 4, 4384.

    Article  Google Scholar 

  3. T.-H. Wu, Y.-Y. Hsu, and S.-Y. Lin (2012). Small 8, 2099.

    Article  CAS  Google Scholar 

  4. G. Li and R. Jin (2013). Acc. Chem. Res. 46, 1749.

    Article  CAS  Google Scholar 

  5. S. M. Copp, D. E. Schultz, S. Swasey, and E. G. Gwinn (2015). ACS Nano 9, 2303.

    Article  CAS  Google Scholar 

  6. N. Bodappa, U. Fluch, Y. Fu, M. Mayor, P. Moreno-Garcia, H. Siegenthaler, and T. Wandlowski (2014). Nanoscale 6, 15117.

    Article  CAS  Google Scholar 

  7. W. Kurashige, M. Yamaguchi, K. Nobusada, and Y. Negishi (2012). J. Phys. Chem. Lett. 3, 2649.

    Article  CAS  Google Scholar 

  8. A. C. Templeton, M. J. Hostetler, C. T. Kraft, and R. W. Murray (1998). J. Am. Chem. Soc. 120, 1906.

    Article  CAS  Google Scholar 

  9. S. Chen and R. W. Murray (1999). Langmuir 15, 682.

    Article  CAS  Google Scholar 

  10. O. Toikkanen, S. Carlsson, A. Dass, G. Rönnholm, N. Kalkkinen, and B. M. Quinn (2010). J. Phys. Chem. Lett. 1, 32.

    Article  CAS  Google Scholar 

  11. N. Sandhyarani and T. Pradeep (2001). Chem. Phys. Lett. 338, 33.

    Article  CAS  Google Scholar 

  12. M. Dasog and R. W. J. Scott (2007). Langmuir 23, 3381.

    Article  CAS  Google Scholar 

  13. X. Yuan, N. Goswami, I. Mathews, Y. Yu, and J. Xie (2015). Nano Res. 8, 3488.

    Article  CAS  Google Scholar 

  14. A. Mathew and T. Pradeep (1017). Part. Part. Sys. Charact. 2014, 31.

    Google Scholar 

  15. N. Cathcart and V. Kitaev (2010). J. Phys. Chem. C 114, 16010.

    Article  CAS  Google Scholar 

  16. T. U. B. Rao, B. Nataraju, and T. Pradeep (2010). J. Am. Chem. Soc. 132, 16304.

    Article  CAS  Google Scholar 

  17. O. M. Bakr, V. Amendola, C. M. Aikens, W. Wenseleers, R. Li, L. Dal Negro, G. C. Schatz, and F. Stellacci (2009). Angew. Chem. 48, 5921.

    Article  CAS  Google Scholar 

  18. N. Nishida, H. Yao, T. Ueda, A. Sasaki, and K. Kimura (2007). Chem. Mater. 19, 2831.

    Article  CAS  Google Scholar 

  19. A. Desireddy, B. E. Conn, J. Guo, B. Yoon, R. N. Barnett, B. M. Monahan, K. Kirschbaum, W. P. Griffith, R. L. Whetten, U. Landman, and T. P. Bigioni (2013). Nature 501, 399.

    Article  CAS  Google Scholar 

  20. H. Yang, Y. Wang, H. Huang, L. Gell, L. Lehtovaara, S. Malola, H. Häkkinen, and N. Zheng (2013). Nat. Commun. 4, 2422.

  21. L. G. AbdulHalim, N. Kothalawala, L. Sinatra, A. Dass, and O. M. Bakr (2014). J. Am. Chem. Soc. 136, 15865.

    Article  CAS  Google Scholar 

  22. Z. Wu, E. Lanni, W. Chen, M. E. Bier, D. Ly, and R. Jin (2009). J. Am. Chem. Soc. 131, 16672.

    Article  CAS  Google Scholar 

  23. C. P. Joshi, M. S. Bootharaju, M. J. Alhilaly, and O. M. Bakr (2015). J. Am. Chem. Soc. 137, 11578.

    Article  CAS  Google Scholar 

  24. J. Guo, S. Kumar, M. Bolan, A. Desireddy, T. P. Bigioni, and W. P. Griffith (2012). Anal Chem. 84, 5304.

    Article  CAS  Google Scholar 

  25. K. M. Harkness, Y. Tang, A. Dass, J. Pan, N. Kothalawala, V. J. Reddy, D. E. Cliffel, B. Demeler, F. Stellacci, O. M. Bakr, and J. A. McLean (2012). Nanoscale 4, 4269.

    Article  CAS  Google Scholar 

  26. L. G. AbdulHalim, S. Ashraf, K. Katsiev, A. R. Kirmani, N. Kothalawala, D. H. Anjum, S. Abbas, A. Amassian, F. Stellacci, A. Dass, I. Hussain, and O. M. Bakr (2013). J. Mater. Chem A. 1, 10148.

    Article  CAS  Google Scholar 

  27. I. Chakraborty, A. Govindarajan, J. Erusappan, A. Ghosh, T. Pradeep, B. Yoon, R. L. Whetten, and U. Landman (2012). Nano Lett. 12, 5861.

    Article  CAS  Google Scholar 

  28. Y. Negishi, R. Arai, Y. Niihori, and T. Tsukuda (2011). Chem. Commun. 47, 5693.

    Article  CAS  Google Scholar 

  29. M. Farrag, M. Tschurl, and U. Heiz (2013). Chem. Mater. 25, 862.

    Article  CAS  Google Scholar 

  30. S. Kumar, M. D. Bolan, and T. P. Bigioni (2010). J. Am. Chem. Soc. 132, 13141.

    Article  CAS  Google Scholar 

  31. K. Zheng, X. Yuan, K. Kuah, Z. Luo, Q. Yao, Q. Zhang, and J. Xie (2015). Chem. Commun. 51, 15165.

    Article  CAS  Google Scholar 

  32. X. Yuan, M. I. Setyawati, A. S. Tan, C. N. Ong, D. T. Leong, and J. Xie (2013). NPG Asia Mater. 5, e39.

    Article  CAS  Google Scholar 

  33. T. Udayabhaskararao, M. S. Bootharaju, and T. Pradeep (2013). Nanoscale 5, 9404.

    Article  CAS  Google Scholar 

  34. A. Desireddy, S. Kumar, J. Guo, M. D. Bolan, W. P. Griffith, and T. P. Bigioni (2013). Nanoscale 5, 2036.

    Article  CAS  Google Scholar 

  35. F. Bertorelle, R. Hamouda, D. Rayane, M. Broyer, R. Antoine, P. Dugourd, L. Gell, A. Kulesza, R. Mitrić, and V. Bonačić-Koutecký (2013). Nanoscale 5, 5637.

    Article  CAS  Google Scholar 

  36. T. Udaya Bhaskara Rao and T. Pradeep (2010). Angew. Chem. 49, 3925.

    Article  CAS  Google Scholar 

  37. K. Nomiya, K.-I. Onoue, Y. Kondoh, N. C. Kasuga, H. Nagano, M. Oda, and S. Sakuma (1995). Polyhedron 14, 1359.

    Article  CAS  Google Scholar 

  38. J. Yan, H. Su, H. Yang, S. Malola, S. Lin, H. Häkkinen, and N. Zheng (2015). J. Am. Chem. Soc. 137, 11880.

    Article  CAS  Google Scholar 

  39. K. Pyo, V. D. Thanthirige, K. Kwak, P. Pandurangan, G. Ramakrishna, and D. Lee (2015). J. Am. Chem. Soc. 137, 8244.

    Article  CAS  Google Scholar 

  40. M. Zhu, G. Chan, H. Qian, and R. Jin (2011). Nanoscale 3, 1703.

    Article  CAS  Google Scholar 

  41. K. Sridharan, P. Sreekanth, T. J. Park, and R. Philip (2015). J. Phys. Chem. C 119, 16314.

    Article  CAS  Google Scholar 

  42. S. Knoppe, J. Boudon, I. Dolamic, A. Dass, and T. Bürgi (2011). Anal. Chem. 83, 5056.

    Article  CAS  Google Scholar 

  43. M. A. Habeeb Muhammed and T. Pradeep (2009). J Clust Sci 20, 365.

    Article  CAS  Google Scholar 

  44. P. Ramasamy, S. Guha, E. S. Shibu, T. S. Sreeprasad, S. Bag, A. Banerjee, and T. Pradeep (2009). J. Mater. Chem. 19, 8456.

    Article  CAS  Google Scholar 

  45. H. Yao, O. Momozawa, T. Hamatani, and K. Kimura (2001). Chem. Mater. 13, 4692.

    Article  CAS  Google Scholar 

  46. Y. Negishi and T. Tsukuda (2003). J. Am. Chem. Soc. 125, 4046.

    Article  CAS  Google Scholar 

  47. K. Nomiya, Y. Kondoh, H. Nagano, and M. Oda (1995). J. Chem. Soc., Chem. Commun. 16, 1679.

    Article  Google Scholar 

  48. H. Hakkinen (2012). Nat. Chem. 4, 443.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Program (NRP 62, project number 406240_126108) of the Swiss National Science Foundation (SNSF) and by the University of Bern. N. B. acknowledges gratefully the provision of the TEM facility by the Institute of Anatomy of the University of Bern. E. K. also acknowledges the support from The Academy of Finland (Projects Nos. 284562 and 278743).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodappa Nataraju.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4997 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nataraju, B., Kalenius, E., Udayabhaskararao, T. et al. Phase Transfer Induced Enhanced Stability of Monolayer Protected Silver Quantum Clusters. J Clust Sci 29, 41–48 (2018). https://doi.org/10.1007/s10876-017-1299-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1299-5

Keywords

Navigation