Skip to main content
Log in

Highly Efficient Ag-Doped Ba0.5Sr0.5ZrO3 Nanocomposite with Enhanced Photocatalytic and Antibacterial Activity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this work, zirconate-based nanoparticles (BaxSr1−xZrO3, x = 0, 0.25, 0.5, 0.75 and 1), as well as Ag-doped Ba0.5Sr0.5ZrO3 nanoparticles with different Ag contents, were prepared using a sol–gel method. The synthesized materials were characterized by XRD, FE-SEM, EDS, TEM, DLS, TGA, ICP, FT-IR, DRS, and BET analyses. XRD analysis showed that BaZrO3 was formed in a cubic perovskite structure, whereas SrZrO3, Ba0.5Sr0.5ZrO3, and Ag-doped Ba0.5Sr0.5ZrO3 samples showed an orthorhombic phase. FE-SEM, TEM and DLS analyses demonstrated that the crystallite size of the 25 mol% Ag-doped Ba0.5Sr0.5ZrO3 sample was smaller than that of the Ba0.5Sr0.5ZrO3. EDS analysis confirmed the presence of the expected elements in all of the samples and ICP determined the exact Ag content in the Ag-doped sample. Photocatalytic activity of the prepared samples was studied for degradation of MB and EY under UV–Vis irradiation. The 25 mol% Ag-doped Ba0.5Sr0.5ZrO3 dispelled the highest photocatalytic activity. In addition, the Ba0.5Sr0.5ZrO3 and Ag-doped Ba0.5Sr0.5ZrO3 samples were studied for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus strains. It was found that the 25 mol% Ag-doped Ba0.5Sr0.5ZrO3 sample has the highest growth inhibitory effect against S. aureus, due to the unique antibacterial properties of silver particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Xu, P. R. Anusuyadevi, C. Aymonier, R. Luque, and S. Marre (2019). Chem. Soc. Rev. 48, 3868.

    Article  CAS  PubMed  Google Scholar 

  2. Q. Guo, C. Zhou, Z. Ma, and X. Yang (2019). Adv. Mater. 31, 1901997.

    Article  CAS  Google Scholar 

  3. Q. Guo, Z. Ma, C. Zhou, Z. Ren, and X. Yang (2019). Chem. Rev. 119 (20), 11020.

    Article  CAS  PubMed  Google Scholar 

  4. C. F. Goodeve and J. A. Kitchener (1938). Trans. Faraday Soc. 34, 902–908.

    Article  CAS  Google Scholar 

  5. S. Zhai, Z. Fan, K. Jin, M. Zhou, H. Zhao, Y. Zhao, and Z. Cai (2020). J. Colloid Interface Sci. 575, 306.

    Article  CAS  PubMed  Google Scholar 

  6. F. Wang, W. Li, S. Gu, H. Li, X. Liu, and M. Wang (2016). ACS Sustain. Chem. Eng. 4, 6288.

    Article  CAS  Google Scholar 

  7. S. A. Jadhav, S. B. Somvanshi, M. V. Khedkar, S. R. Patade, and K. M. Jadhav (2020). J. Mater. Sci. Mater. Electron. 31, 11352.

    Article  CAS  Google Scholar 

  8. D. N. Bhoyar, S. B. Somvanshi, P. B. Kharat, A. A. Pandit, and K. M. Jadhav (2020). Physica B 581, 411944.

    Article  CAS  Google Scholar 

  9. Z. Liu and Z. Ma (2019). Mater. Res. Bull. 118, 110492.

    Article  CAS  Google Scholar 

  10. Y. Yang, W. Zheng, and L. Zhao (2019). Ceram. Int. 45, 23808.

    Article  CAS  Google Scholar 

  11. Q. Wang, K. Edalati, Y. Koganemaru, S. Nakamura, M. Watanabe, T. Ishihara, and Z. Horita (2020). J. Mater. Chem. 8 (7), 3643.

    Article  CAS  Google Scholar 

  12. S. R. Teeparthi, E. W. Awin, and R. Kumar (2018). Sci. Rep. 8 (1), 1–11.

    Article  CAS  Google Scholar 

  13. M. Aflaki and F. Davar (2016). J. Mol. Liq. 221, 1071.

    Article  CAS  Google Scholar 

  14. Q. Yuan, Y. Liu, L. L. Li, Z. X. Li, C. J. Fang, W. T. Duan, X. G. Li, and C. H. Yan (2009). Microporous Mesoporous Mater. 124 (1–3), 169.

    Article  CAS  Google Scholar 

  15. S. P. Ratnayake, M. M. M. G. P. G. Mantilaka, C. Sandaruwan, D. Dahanayake, E. Murugan, S. Kumar, G. A. J. Amaratunga, and K. N. de Silva (2019). Appl. Catal. A 570, 23.

    Article  CAS  Google Scholar 

  16. Y. Xia, Q. Sun, D. Wang, X. F. Zeng, J. X. Wang, and J. F. Chen (2019). Langmuir 35 (36), 11755.

    Article  CAS  PubMed  Google Scholar 

  17. C. V. Reddy, I. N. Reddy, V. V. N. Harish, K. R. Reddy, N. P. Shetti, J. Shim, and T. M. Aminabhavi (2020). Chemosphere 239, 124766.

    Article  CAS  PubMed  Google Scholar 

  18. Y. Wang, Y. Zhang, H. Lu, Y. Chen, Z. Liu, S. Su, and H. Zeng (2018). RSC Adv. 8, 6752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. H. Butt, M. S. Rafique, S. Bashir, K. Mehmood, and A. Mahmood (2019). Ceram. Int. 45, 5648.

    Article  CAS  Google Scholar 

  20. B. S. Khened, T. Machappa, M. V. N. Pradeep, M. A. Prasad, and M. Sasikala (2016). Mater. Today 3, 369.

    Google Scholar 

  21. H. Zhang, A. Suresh, C. B. Carter, and B. A. Wilhite (2014). Solid State Ion. 266, 58.

    Article  CAS  Google Scholar 

  22. N. Bibi, M. Z. Hussain, S. Hussain, S. Ahmed, I. Ahmad, S. Zhang, and A. Iqbal (2019). Appl. Surf. Sci. 495, 143587.

    Article  CAS  Google Scholar 

  23. A. M. Huerta-Flores, L. M. Torres-Martínez, E. Moctezuma, and O. Ceballos-Sanchez (2016). Fuel 181, 670.

    Article  CAS  Google Scholar 

  24. M. Miodyńska, B. Bajorowicz, P. Mazierski, W. Lisowski, T. Klimczuk, M. J. Winiarski, A. Zaleska-Medynska, and J. Nadolna (2017). Solid State Sci. 74, 13.

    Article  CAS  Google Scholar 

  25. L. A. Alfonso-Herrera, A. M. Huerta-Flores, L. M. Torres-Martínez, J. M. Rivera-Villanueva, and D. J. Ramírez-Herrera (2018). J. Mater. Sci. Mater. Electron. 29 (12), 10395.

    Article  CAS  Google Scholar 

  26. Z. Guo, B. Sa, B. Pathak, J. Zhou, R. Ahuja, and Z. Sun (2014). Int. J. Hydrog. Energy 39 (5), 2042.

    Article  CAS  Google Scholar 

  27. K. Maaze, Silver Nanoparticles: Fabrication, Characterization and Applications (IntechOpen, London, 2018).

    Book  Google Scholar 

  28. D. Gogoi, A. Namdeo, A. K. Golder, and N. R. Peela (2020). Int. J. Hydrog. Energy 45 (4), 2729.

    Article  CAS  Google Scholar 

  29. M. R. Hejtmancik, M. J. Ryan, J. D. Toft, R. L. Persing, P. J. Kurtz, and R. S. Chhabra (2002). Toxicol. Sci. 65 (1), 126.

    Article  CAS  PubMed  Google Scholar 

  30. B. Gulen, P. Demircivi, and E. B. Simsek (2021). J. Photochem. Photobiol. A 404, 112869.

    Article  CAS  Google Scholar 

  31. F. Heshmatpour and R. B. Aghakhanpour (2012). Adv. Powder Technol. 23 (1), 80.

    Article  CAS  Google Scholar 

  32. X. Xu and X. Wang (2009). Nano Res. 2 (11), 891.

    Article  CAS  Google Scholar 

  33. P. P. Khirade, A. B. Shinde, A. V. Raut, S. D. Birajdar, and K. M. Jadhav (2016). Ferroelectrics 504, 216.

    Article  CAS  Google Scholar 

  34. E. C. Aguiar, A. Z. Simoes, C. A. Paskocimas, M. Cilense, E. Longo, and J. A. Varela (2015). J. Mater. Sci. Mater. Electron. 26 (4), 1993.

    Article  CAS  Google Scholar 

  35. Q. Zhang, Y. Huang, L. Xu, J. J. Cao, W. Ho, and S. C. Lee (2016). ACS Appl. Mater. Interfaces 8 (6), 4165.

    Article  CAS  PubMed  Google Scholar 

  36. A. B. Lavand and Y. Malghe (2014). J. Therm. Anal. Calorim. 118 (3), 1613.

    Article  CAS  Google Scholar 

  37. A. Zhang, M. Lu, S. Wang, G. Zhou, S. Wang, and Y. Zhou (2007). J. Alloy Compd. 433, 7.

    Article  CAS  Google Scholar 

  38. H. Padma Kumar, C. Vijayakumar, C. N. George, S. Solomon, R. Jose, J. K. Thomas, and J. Koshy (2008). J. Alloy Compd. 458, 528.

    Article  CAS  Google Scholar 

  39. K. Maeda and K. Domen (2014). J. Catal. 310, 67.

    Article  CAS  Google Scholar 

  40. J. Liu, Y. Sun, and Z. Li (2012). CrystEngComm 14 (4), 1473.

    Article  CAS  Google Scholar 

  41. C. Hou, B. Hu, and J. Zhu (2018). Catalysts 8 (12), 575.

    Article  CAS  Google Scholar 

  42. A. Hossain, A. S. Rayhan, M. J. Raihan, A. Nargis, I. M. Ismail, A. Habib, and A. J. Mahmood (2016). Am. J. Anal. Chem. 7 (12), 863.

    Article  CAS  Google Scholar 

  43. A. Kumar and G. Pandey (2017). Mater. Sci. Eng. Int. J. 1 (3), 1.

    CAS  Google Scholar 

  44. Y. H. Chiu, T. F. M. Chang, C. Y. Chen, M. S. One, and Y. J. Hsu (2019). Catalysts 9 (5), 430.

    Article  CAS  Google Scholar 

  45. Y. Cong, J. Zhang, F. Chen, M. Anpo, and D. He (2007). J. Phys. Chem. C 111 (28), 10618.

    Article  CAS  Google Scholar 

  46. K. Fuku, R. Hayashi, S. Takakura, T. Kamegawa, K. Mori, and H. Yamashita (2013). Angew. Chem. Int. Ed. 125 (29), 7594.

    Article  Google Scholar 

  47. N. Daneshvar, A. Aleboyeh, and A. R. Khataee (2005). Chemosphere 59 (6), 761.

    Article  CAS  PubMed  Google Scholar 

  48. E. M. Saggioro, A. S. Oliveira, T. Pavesi, C. G. Maia, L. F. V. Ferreira, and J. C. Moreira (2011). Molecules 16 (12), 10370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. P. Logeswari, S. Silambarasan, and J. Abraham (2015). J. Saudi Chem. Soc. 19 (3), 311.

    Article  Google Scholar 

  50. N. Durán, M. Durán, M. B. De Jesus, A. B. Seabra, W. J. Fávaro, and G. Nakazato (2016). Nanomed. Nanotechnol. 12 (3), 789.

    Article  CAS  Google Scholar 

  51. L. C. Yun’an Qing, R. Li, G. Liu, Y. Zhang, X. Tang, J. Wang, H. Liu, and Y. Qin (2018). Int. J. Nanomed. 13, 3311.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the University of Guilan for the financial support of this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Fallah Moafi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 806 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirmohammadzadeh, L., Moafi, H.F. & Shojaei, A.F. Highly Efficient Ag-Doped Ba0.5Sr0.5ZrO3 Nanocomposite with Enhanced Photocatalytic and Antibacterial Activity. J Clust Sci 33, 1475–1488 (2022). https://doi.org/10.1007/s10876-021-02071-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02071-y

Keywords

Navigation