Skip to main content
Log in

On the spectrum of α-rigid maps

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

We show that there exists an α-rigid transformation with α ≤ 1/2 whose spectrum has a Lebesgue component. This answers the question stated by Klemes and Reinhold in [30]. Moreover, we introduce a new criterion to identify a large class of α-rigid transformations with singular spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. el Abdalaoui, A. Nogueira, T. de la Rue, Weak mixing of maps with bounded cutting parameter. New York J. Math. 11 (2005), 81–87 (electronic).

    MATH  MathSciNet  Google Scholar 

  2. O. N. Ageev, Dynamical systems with an even-multiplicity Lebesgue component in the spectrum. Math. USSR. Sb., 64 (1989), No. 2, 305–316.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Arnoux, D. Ornstein, and B. Weiss, Cutting and stacking, interval exchanges and geometric models. Isr. J. Math. 50, Nos. 1–2 (1985), 160–168.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Beurling, Quasianalyticity and general distributions. Stanford Univ. Lect. Notes, 30 (1961).

  5. J. R. Baxter, On the class of ergodic transformations. Ph.D. Thesis, University of Toronto (1969).

  6. R. V. Chacon, Weakly mixing transformations which are not strongly mixing. Proc. Am. Math. Soc. 22 (1969), 559–562.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. V. Chacon, Transformations having continuous spectrum. J. Math. Mech. 16 (1966), 399–415.

    MATH  MathSciNet  Google Scholar 

  8. F. M. Dekking and M. Keane, Mixing properties of substitutions. Zeit. Wahr. 42 (1978), 23–33.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. del Junco and M. Lemańczyk, Generic spectral properties of measure-preserving maps and applications. Proc. Am. Math. Soc. 115 (1992), 725–736.

    Article  MATH  Google Scholar 

  10. A. del Junco and D. Rudolph, On ergodic actions whose self-joinings are graphs. Ergodic Theory Dynam. Systems 7 (1987), 531–557.

    MATH  MathSciNet  Google Scholar 

  11. A. del Junco, A. Rahe, and L. Swanson, Chacon’s automorphism has minimal self-joinings. J. Anal. Math. 37 (1980), 276–284.

    Article  MATH  Google Scholar 

  12. K. Fraçzek and M. Lemańczyk, On disjointness properties of some smooth flows. Fundam. Math. 185 (2005), No. 2, 117–142.

    Article  MATH  Google Scholar 

  13. K. Fraçzek and M. Lemańczyk, A class of special flows over irrational rotations which is disjoint from mixing flows. Ergodic Theory Dynam. Systems 24 (2004), No. 4, 1083–1095.

    Article  MATH  MathSciNet  Google Scholar 

  14. N. Friedman, Partial mixing, partial rigidity, and factors. Contemp. Math. 94, (1987), 141–145.

    Google Scholar 

  15. N. Friedman, Introduction to ergodic theory. Van Nostrand Reinhold, New York (1970).

    MATH  Google Scholar 

  16. N. Friedman, Replication and stacking in ergodic theory. Am. Math. Monthly 99 (1992), 31–34.

    Article  MATH  Google Scholar 

  17. M. Guenais, Singularité des produits de Anzai associes aux fonctions caracteristiques d’un intervalle. Bull. Soc. Math. France 127 (1999), No. 1, 71–93.

    MATH  MathSciNet  Google Scholar 

  18. H. Helson and W. Parry, Cocycles and spectra. Arkiv Math. 16 (1978), 195–206.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Mathew and M. G. Nadkarni, A measure-preserving transformation whose spectrum has a Lebesgue component of multiplicity two. Bull. London Math. Soc. 16 (1984), 402–406.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. G. Nadkarni, Spectral theory of dynamical systems. Birkhäuser, Basel (1998).

    Google Scholar 

  21. V. I. Oseledets, On the spectrum of ergodic automorphisms. Sov. Math. Dokl. 7 (1966), 776–779.

    MATH  Google Scholar 

  22. W. Parry, Topics in ergodic theory. Cambridge Univ. Press (1981).

  23. K. Petersen, Ergodic theory. Cambridge Univ. Press (1983).

  24. A. A. Prikhod’ko and V. V. Ryzhikov, Disjointness of the convolutions for Chacon’s automorphism. Colloq. Math. 84/85 (2000), 67–74.

    MathSciNet  Google Scholar 

  25. T. Kamae, Spectral properties of automata generating sequences (unpublished).

  26. A. B. Katok, Constructions in ergodic theory (preprint).

  27. A. B. Katok, Interval exchange transformations and some special flows are not mixing. Isr. J. Math. 35 (1980), No. 4, 301–310.

    Article  MATH  MathSciNet  Google Scholar 

  28. A. B. Katok and A. M. Stepin, Approximation of ergodic dynamic systems by periodic transformations. Sov. Math. Dokl. 7 (1966), 1638–1641.

    MATH  Google Scholar 

  29. J. L. King and J.-P. Thouvenot, A canonical structure theorem for joining-rank maps. J. Anal. Math. 51 (1988), 182–227.

    Article  MATH  Google Scholar 

  30. I. Klemes and K. Reinhold, Rank-one transformations with singular spectral type. Isr. J. Math. 98 (1997), 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Lemańczyk, Toeplitz ℤ2-extensions. Ann. Inst. H. Poincaré 24 (1988), No. 1, 1–43.

    MATH  Google Scholar 

  32. M. Queffélec, Une nouvelle propriété des suites de Rudin–Shapiro. Ann. Inst. Fourier 37 (1987), No. 2, 115–138.

    MATH  MathSciNet  Google Scholar 

  33. M. Queffélec, Substitution dynamical systems. Spectral analysis. Lect. Notes Math. 1294, Springer-Verlag (1987).

  34. W. Rudin, Fourier analysis on groups. J. Wiley and Sons (1962).

  35. E. A. Robinson, Jr., Ergodic measure-preserving transformations with arbitrary finite spectral multiplicities. Invent. Math. 72 (1983), No. 2, 299–314.

    Article  MATH  MathSciNet  Google Scholar 

  36. V. A. Rokhlin, Selected topics in the metric theory of dynamical systems. Usp. Mat. Nauk 4 (1949), 57–128 (in Russian); Am. Math. Soc. Transl. 40 (1966), 171–240; (1979), 97–122.

    MATH  Google Scholar 

  37. D. Rudolph, An example of a measure-preserving map with minimal self-joining and applications. J. Anal. Math. 35 (1979), 97–122.

    Article  MATH  MathSciNet  Google Scholar 

  38. V. V. Ryzhikov, Joinings, intertwining operators, factors, and mixing properties of dynamical systems. Izv. Math. Russ. Acad. Sci. 26 (1994), 91–114.

    Article  MathSciNet  Google Scholar 

  39. _____, Around simple dynamical systems. Induced joinings and multiple mixing. J. Dynam. Control Systems 3 (1997), No. 1, 111–127.

    Article  MATH  MathSciNet  Google Scholar 

  40. _____, Stochastic intertwinings and multiple mixing of dynamical systems. J. Dynam. Control Systems 2 (1996), No. 1, 1–19.

    Article  MATH  MathSciNet  Google Scholar 

  41. A. M. Stepin, Spectral properties of generic dynamical system. Math. USSR Izv. 50 (1986), 159–192.

    MathSciNet  Google Scholar 

  42. W. A. Veech, The metric theory of interval exchange transformations. I. Generic spectral properties. Am. J. Math. 106 (1984), 1331–1359.

    Article  MATH  MathSciNet  Google Scholar 

  43. _____, A criterion for a process to be prime. Monats. Math. 94 (1982), 335–341.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. H. El Abdalaoui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Abdalaoui, E.H. On the spectrum of α-rigid maps. J Dyn Control Syst 15, 453–470 (2009). https://doi.org/10.1007/s10883-009-9076-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-009-9076-x

Key words and phrases

2000 Mathematics Subject Classification

Navigation