Skip to main content
Log in

Sub-Riemannian structures on 3D lie groups

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

We give a complete classification of left-invariant sub-Riemannian structures on three-dimensional Lie groups in terms of the basic differential invariants. As a consequence, we explicitly find a sub-Riemannian isometry between the nonisomorphic Lie groups SL(2) and A +(\( \mathbb{R} \)) × S 1, where A +(\( \mathbb{R} \)) denotes the group of orientation preserving affine maps on the real line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Agrachev, D. Barilari, and U. Boscain. Introduction to Riemannian and sub-Riemannian geometry. http://people.sissa.it/agrachev/agrachev files/notes.html.

  2. ______, On the Hausdorff volume in sub-Riemannian geometry. Calculus of Variations and Partial Differential Equations 10.1007/s00526-011-0414-y (2011), p. 1–34.

  3. A. Agrachev, U. Boscain, J.-P. Gauthier, and F. Rossi. The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups. J. Funct. Anal. 256 (2009), No. 8, 2621–2655.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. A. Agrachev. Exponential mappings for contact sub-Riemannian structures. J. Dynam. Control Systems 2 (1996), No. 3, 321–358.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. A. Agrachev, G. Charlot, J. P. A. Gauthier, and V. M. Zakalyukin. On sub-Riemannian caustics and wave fronts for contact distributions in the three-space. J. Dynam. Control Systems 6 (2000), No. 3, 365–395.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. A. Agrachev and Yu. L. Sachkov. Control theory from the geometric viewpoint. Encycl. Math. Sci. 87, Springer-Verlag, Berlin (2004).

  7. A. Bellaïche. The tangent space in sub-Riemannian geometry. J. Math. Sci. 83 (1997), No. 4, 461–476.

    Article  MathSciNet  MATH  Google Scholar 

  8. U. Boscain and F. Rossi. Invariant Carnot–Carathéodory metrics on S3, SO(3), SL(2), and lens spaces. SIAM J. Control Optim. 47 (2008), No. 4, 1851–1878.

    Article  MathSciNet  MATH  Google Scholar 

  9. É. Cartan. Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes, II. Ann. Scu. Norm. Sup. Pisa Cl. Sci. (2) 1 (1932), No. 4, 333–354.

    MathSciNet  MATH  Google Scholar 

  10. É. Cartan. Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes. Ann. dMat. Pura Appl. 11 (1933), No. 1, 17–90.

    Article  MathSciNet  Google Scholar 

  11. W.-L. Chow. Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 117 (1939), 98–105.

    Article  MathSciNet  Google Scholar 

  12. E. Falbel and C. Gorodski. Sub-Riemannian homogeneous spaces in dimensions 3 and 4. Geom. Dedicata 62 (1996), No. 3, 227–252.

    Article  MathSciNet  MATH  Google Scholar 

  13. V. Gershkovich and A. Vershik. Nonholonomic manifolds and nilpotent analysis. J. Geom. Phys. 5 (1988), No. 3, 407–452.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Gromov. Carnot–Carathéodory spaces seen from within. Progr. Math. 144, Birkhäuser, Boston (1996), 79–323.

  15. N. Jacobson. Lie algebras. Interscience Publishers, New York–London (1962).

  16. I. Moiseev and Yu. L. Sachkov. Maxwell strata in sub-Riemannian problem on the group of motions of a plane. ESAIM Control Optim. Calc. Var. 16 (2010), 380–399.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Montgomery. A tour of subriemannian geometries, their geodesics and applications. Math. Surv. Monogr. 91, Am. Math. Soc. Providence, Rhode Island (2002).

  18. T. Nagano. Linear differential systems with singularities and an application to transitive Lie algebras. J. Math. Soc. Jpn. 18 (1966), 398–404.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Rashevsky. Any two points of a totally nonholonomic space may be connected by an admissible line. Uch. Zap. Liebknecht Ped. Inst. 2 (1938), 83–84.

    Google Scholar 

  20. Yu. L. Sachkov. Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane. ESAIM Control Optim. Calc. Var. 16 (2010), 1018–1039.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. S. Strichartz. Sub-Riemannian geometry. J. Differ. Geom. 24 (1986), No. 2, 221–263.

    MathSciNet  MATH  Google Scholar 

  22. _______, Corrections to: “Sub-Riemannian geometry.” J. Differ. Geom. 30 (1989), No. 2, 595–596.

    MathSciNet  Google Scholar 

  23. H. J. Sussmann. An extension of a theorem of Nagano on transitive Lie algebras. Proc. Am. Math. Soc. 45 (1974), 349–356.

    Article  MathSciNet  MATH  Google Scholar 

  24. ________, Lie brackets, real analyticity and geometric control. Progr. Math. 27, Birkhäuser, Boston (1983), 1–116.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Agrachev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrachev, A., Barilari, D. Sub-Riemannian structures on 3D lie groups. J Dyn Control Syst 18, 21–44 (2012). https://doi.org/10.1007/s10883-012-9133-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-012-9133-8

Key words and phrases

2000 Mathematics Subject Classification

Navigation