Skip to main content
Log in

Control Systems on Three-Dimensional Lie Groups: Equivalence and Controllability

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

We consider left-invariant control affine systems, evolving on three-dimensional matrix Lie groups. Equivalence and controllability are investigated. All full-rank systems are classified, under detached feedback equivalence. A representative is identified for each equivalence class. The controllability nature of these representatives is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams RM, Biggs R, Remsing CC. Equivalence of control systems on the Euclidean group SE(2). Control Cybernet. 2012;41:513–24.

    MathSciNet  Google Scholar 

  2. Adams RM, Biggs R, Remsing CC. On the equivalence of control systems on the orthogonal group SO(4). In: Karimi HR, editor. Recent researches in automatic control, systems science and communications. Athens: WSEAS; 2012, pp. 54–9.

    Google Scholar 

  3. Adams RM, Biggs R, Remsing CC. Control systems on the orthogonal group SO (4). Commun Math. 2013;21:107–28.

    MathSciNet  Google Scholar 

  4. Agrachev AA, Sachkov YL. Control theory from the geometric viewpoint. Berlin: Springer; 2004.

    Book  MATH  Google Scholar 

  5. Barrett DI, Biggs R, Remsing CC. Affine subspaces of the Lie algebra 𝔰𝔢 (1, 1). (Submitted).

  6. Biggs R, Remsing CC. A category of control systems. An Ştiinţ Univ Ovidius Constanţa. 2012;20:355–68.

    MATH  MathSciNet  Google Scholar 

  7. Biggs R, Remsing CC. On the equivalence of cost-extended control systems on Lie groups. In: Karimi HR, editor. Recent researches in automatic control, systems science and communications. Athens: WSEAS; 2012, pp. 60–5.

    Google Scholar 

  8. Biggs R, Remsing CC. Control affine systems on semisimple three-dimensional Lie groups. An Ştiinţ Univ AI Cuza Iaşi Ser Mat. 2013;59:399–414.

    Google Scholar 

  9. Biggs R, Remsing CC. Control affine systems on solvable three-dimensional Lie groups. I Arch Math (Brno). 2013;49:187–97.

    Article  MathSciNet  Google Scholar 

  10. Biggs R, Remsing CC. Control affine systems on solvable three-dimensional Lie groups, II. Note Mat. 2013;33:19–31.

    MATH  MathSciNet  Google Scholar 

  11. Biggs R, Remsing CC. Cost-extended control systems on Lie groups.Mediterr J Math 2014;11:193–215.

    Article  MathSciNet  Google Scholar 

  12. Biggs R, Remsing CC. On the equivalence of control systems on Lie groups. (Submitted).

  13. Biggs R, Remsing CC. Equivalence of control systems on the pseudo-orthogonal group SO (2, 1)0. (Submitted).

  14. Bloch AM. Nonholonomic mechanics and control. New York: Springer; 2003.

    Book  MATH  Google Scholar 

  15. Bonnard B, Jurdjevic V, Kupka I, Sallet G. Transitivity of families of invariant vector fields on the semidirect product of Lie groups. Trans Amer Math Soc. 1982;271:525–35.

    Article  MATH  MathSciNet  Google Scholar 

  16. Ha KY, Lee JB. Left invariant metrics and curvatures on simply connected three-dimensional Lie groups. Math Nachr. 2009;282:868–98.

    Article  MATH  MathSciNet  Google Scholar 

  17. Harvey A. Automorphisms of the Bianchi model Lie groups. J Math Phys. 1979; 20:251–3.

    Article  MathSciNet  Google Scholar 

  18. Hilgert J, Neeb K-H. Structure and geometry of Lie groups. New York: Springer; 2012.

    Book  MATH  Google Scholar 

  19. Jakubczyk B. Equivalence and invariants of nonlinear control systems. In: Sussmann HJ, editor. Nonlinear controllability and optimal control. New York: Marcel Dekker; 1990, pp. 177–218.

    Google Scholar 

  20. Jurdjevic V. Geometric control theory. Cambridge: Cambridge University Press; 1997.

    MATH  Google Scholar 

  21. Jurdjevic V. Optimal control on Lie groups and integrable Hamiltonian systems. Regul Chaotic Dyn. 2011;16:514–35.

    Article  MathSciNet  Google Scholar 

  22. Jurdjevic V, Monroy-Pérez F. Variational problems on Lie groups and their homogeneous spaces: elastic curves, tops, and constrained geodesic problems. In: Anzaldo-Meneses A, Bonnard B, Gauthier JP, Monroy-Pérez F, editors. Contemporary trends in nonlinear geometric control theory and its applications. Singapore: World Scientific; 2002, pp. 3–51.

    Chapter  Google Scholar 

  23. Jurdjevic V, Sussmann HJ. Control systems on Lie groups. J Diff Equations. 1972;12:313–29.

    Article  MATH  MathSciNet  Google Scholar 

  24. Krasiński A, Behr CG, Schücking E, Estabrook FB, Wahlquist HD, Ellis GFR, Jantzen R, Kundt W. The Bianchi classification in the Schücking-Behr approach. Gen Relativ Gravit. 2003;35:475–89.

    Article  MATH  Google Scholar 

  25. MacCallum MAH. On the classification of the real four-dimensional Lie algebras. In: Harvey A, editor. On Einstein’s path: essays in honour of E. Schücking. New York: Springer; 1999, pp. 299–317.

    Chapter  Google Scholar 

  26. Mubarakzyanov GM. On solvable Lie algebras (Russian). Izv Vyssh Uchebn Zaved Mat. 1963;1963(1(32)):114–23.

    Google Scholar 

  27. Onishchik AL, Vinberg EB. Lie groups and Lie algebras III. New York: Springer; 1994.

    Book  MATH  Google Scholar 

  28. Popovych RO, Boyco VM, Nesterenko MO, Lutfullin MW. Realizations of real low-dimensional Lie algebras. J Phys A Math Gen. 2003;36:7337–60.

    Article  MATH  Google Scholar 

  29. Puta M, Birtea P, Lăzureanu C, Pop C, Tudoran R. Control, integrability and stability in some concrete mechanical problems on matrix Lie groups. Quad Sem Top Alg e Diff Univ di Roma La Sapienza; 1998.

  30. Puta M. Optimal control problems on matrix Lie groups. In: Szenthe J, editor. New developments in differential geometry. Dordrecht: Kluwer; 1999, pp. 361–73.

    Google Scholar 

  31. Remsing CC. Optimal control and Hamilton-Poisson formalism. Int J Pure Appl Math. 2010;59:11–7.

    MATH  MathSciNet  Google Scholar 

  32. Remsing CC. Control and integrability on SO (3). In: Ao SI, et al., editors. Proceedings WCE 2010, London, U.K. Hong Kong: IAENG; 2010, pp. 1705–10.

    Google Scholar 

  33. Respondek W, Tall IA. Feedback equivalence of nonlinear control systems: a survey on formal approach. Chaos in automatic control, control eng. London: CRC (Taylor & Francis); 2006, pp. 137–262.

  34. Respondek W, Zhitomirskii M. Feedback classification of nonlinear control systems on 3-manifolds. Math Control Signals Syst. 1995;8:299–333.

    Article  MATH  MathSciNet  Google Scholar 

  35. Sachkov YL. Control theory on Lie groups. J Math Sci. 2009;156:381–439.

    Article  MATH  MathSciNet  Google Scholar 

  36. Sachkov YL. Maxwell strata in the Euler elastic problem. J Dyn Control Syst. 2008; 14:169–234.

    Article  MATH  MathSciNet  Google Scholar 

  37. Sachkov YL. Conjugate points in the Euler elastic problem. J Dyn Control Syst. 2008;14:409–39.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudiu C. Remsing.

Appendix

Appendix

Table 2 Characterization of controllability for full-rank systems
Table 3 Classification of controllable systems on (completely) solvable groups
Table 4 Classification of controllable systems on solvable groups (cont.)
Table 5 Classification of controllable systems on semisimple groups

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biggs, R., Remsing, C.C. Control Systems on Three-Dimensional Lie Groups: Equivalence and Controllability. J Dyn Control Syst 20, 307–339 (2014). https://doi.org/10.1007/s10883-014-9212-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-014-9212-0

Keywords

Mathematics Subject Classifications (2010)

Navigation