Skip to main content
Log in

Nonlinear Superposition Formulas for Two Classes of Non-holonomic Systems

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

The aim of this paper is to apply the nonlinear superposition principle to some non-holonomic systems, in particular, those in chained and power forms, which are used to represent the kinematic equations of various non-holonomic wheeled vehicles. The existence of nonlinear superposition formulas is studied on the basis of Lie algebraic analysis. First, it is shown that nonlinear superposition formulas can be constructed using the knowledge of n + 1 particular solutions, using the affine structure of a system in chained form and the fact that a system in power form is diffeomorphic to a system in chained form. Secondly, using the notion of first integral, it is shown that only one particular solution is sufficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson R, Harnad J, Winternitz P. Systems of ordinary differential equations with nonlinear superposition principles. Phys D: Nonlinear Phenom. 1982;4(2):164–82.

    Article  MATH  MathSciNet  Google Scholar 

  2. Angelo RM, Duzzioni EI, Ribeiro AD. Integrability in time-dependent systems with one degree of freedom. J Phys A: Math Theor. 2012;45(5):055101.

    Article  MathSciNet  Google Scholar 

  3. Blázquez-Sanz D, Morales-Ruiz JJ. Local and global aspects of lie superposition theorem. J Lie Theor. 2010;20(3):483–517.

    MATH  Google Scholar 

  4. Cariñena JF, Clemente-Gallardo J, Ramos A. Motion on Lie groups and its applications in control theory. Rep Math Phys. 2003;51(2):159–70.

    Article  MATH  MathSciNet  Google Scholar 

  5. Cariñena JF, de Lucas J. Lie systems: theory, generalisations, and applications. Diss Math. 2012;479:1–162.

    Google Scholar 

  6. Cariñena JF, Grabowski J, de Lucas J. Superposition rules for higher order systems and their applications. J Phys A: Math Theor. 2012;45(18):185202.

    Article  Google Scholar 

  7. Cariñena JF, Grabowski J, Marmo G. 2000. Lie-Scheffers systems: a geometric approach. Bibliopolis Napoli.

  8. Cariñena JF, Grabowski J, Marmo G. Superposition rules, Lie theorem, and partial differential equations. Rep Math Phys. 2007;60(2):237–58.

    Article  MATH  MathSciNet  Google Scholar 

  9. Cariñena JF, Guha P, de Lucas J. A quasi-lie schemes approach to second-order gambier equations. SIGMA 2013;9:026.

    Google Scholar 

  10. Conte G, Moog CH, Perdon AM. Algebraic methods for nonlinear control systems. Communications and control engineering, 2nd ed. London: Springer; 2006.

    Google Scholar 

  11. Fleming WH. Functions of several variables.3rd ed. New York: Springer; 1987.

    Google Scholar 

  12. Grabowski J, de Lucas J. Mixed superposition rules and the Riccati hierarchy. J Differ Equ. 2013;254(1):179–98.

    Article  MATH  Google Scholar 

  13. Ibragimov NH. Elementary Lie group analysis and ordinary differential equations. New York: Wiley; 1999.

    MATH  Google Scholar 

  14. Ibragimov NH. Integration of systems of first-order equations admitting nonlinear superposition. J Nonlinear Math Phys. 2009;16(supp01):137–47.

    Article  MathSciNet  Google Scholar 

  15. Lie S, Scheffers GW. Vorlesungen uber continuierliche Gruppen mit geometrischen und anderen Anwendungen. Leipzig: Teubner; 1893.

    Book  Google Scholar 

  16. M’Closkey, RT, Murray, RM. Convergence rates for nonholonomic systems in power form. In: American control conference, 1993. IEEE; 1993. p. 2967–2972.

  17. Menini L, Tornambè A. Linearization of Hamiltonian systems through state immersion. In: Proceedings of the 47th IEEE conference on decision and control; 2008. p. 1261–6.

  18. Menini L, Tornambè A. On the use of semi-invariants for the stability analysis of planar systems. In: Proceedings of the 47th IEEE conference on decision and controlp; 2008. 634–9.

  19. Menini L, Tornambè A. Linearization through state immersion of nonlinear systems admitting Lie symmetries. Automatica 2009;45(8):1873–8.

    Article  MATH  MathSciNet  Google Scholar 

  20. Menini L, Tornambè A. On the generation of classes of planar systems with given orbital symmetries. In: Proceedings of the 48th IEEE conference on decision and control; 2009. p. 7442–7.

  21. Menini L, Tornambè A. A procedure for the computation of semi-invariants. In: Proceedings of the 48th IEEE Conference on Decision and Control; 2009. p. 7460–5.

  22. Menini L, Tornambè A. Computation of a linearizing diffeomorphism by quadrature. In: Proceedings of the 49th IEEE conference on decision and control; 2010. p. 6281–6.

  23. Menini L, Tornambè A. Linearization of discrete-time nonlinear systems through state immersion and Lie symmetries. In: Proceedings of the NOLCOS 2010. Bologna; 2010. p. 197–202.

  24. Menini L, Tornambè A. Semi-invariants and their use for stability analysis of planar systems. Int J Control 2010;83(1):154–181.

    Article  MATH  Google Scholar 

  25. Menini L, Tornambè A. Stability analysis of planar systems with nilpotent (non-zero) linear part. Automatica 2010;46(3):537–542.

    Article  MATH  MathSciNet  Google Scholar 

  26. Menini, L., Tornambè, A. Nonlinear superposition formulas: some physically motivated examples. In: Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on; 2011. p. 1092–7.

  27. Menini L, Tornambè A. Symmetries and semi-invariants in the analysis of nonlinear systems. London: Springer; 2011.

    Book  MATH  Google Scholar 

  28. Murray RM, Sastry SS. Nonholonomic motion planning: steering using sinusoids. IEEE Trans Autom Control 1993;38(5):700–16.

    Article  MATH  MathSciNet  Google Scholar 

  29. Olver PJ. Applications of Lie groups to differential equations, volume 107 of Graduate Texts in Mathematics. New York: Springer; 1986.

    Book  Google Scholar 

  30. Pietrzkowski G. Explicit solutions of the 𝔞1-type Lie-Scheffers system and a general Riccati equation. J Dyn Control Syst. 2012;18(4):551–71.

    Article  MATH  MathSciNet  Google Scholar 

  31. Samson C. Control of chained systems application to path following and time-varying point-stabilization of mobile robots. IEEE Trans Autom Control 1995;40(1):64–77.

    Article  MATH  MathSciNet  Google Scholar 

  32. Sordalen, OJ. Conversion of the kinematics of a car with n trailers into a chained form. In: In: Proceedings of the 1993 IEEE international conference on robotics and automation 1993, IEEE; 1993. p. 382–7.

  33. Sorine M, Winternitz P. Superposition laws for solutions of differential matrix Riccati equations arising in control theory. IEEE Trans Autom Control 1985;30(3):266–72.

    Article  MATH  MathSciNet  Google Scholar 

  34. Stephani H. Differential equations: their solutions using symmetries. Cambridge: Cambridge University Press; 1989.

    MATH  Google Scholar 

  35. Teel, AR, Murray, RM, Walsh, G. Nonholonomic control systems: from steering to stabilization with sinusoids. In: Proceedings of the 31st IEEE conference on decision and control 1992, IEEE; 1992. p. 1603–9.

  36. Tilbury, D, Laumond, JP, Murray, R, Sastry, S, Walsh, G. Steering car-like systems with trailers using sinusoids. In: Proceedings of the 1992 IEEE international conference on robotic and automation 1992, IEEE; 1992. p. 1993–8.

  37. Winternitz, P. Lie groups and solutions of nonlinear differential equations. In: Nonlinear phenomena. Springer; 1983. p. 263–331.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Tornambè.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menini, L., Tornambè, A. Nonlinear Superposition Formulas for Two Classes of Non-holonomic Systems. J Dyn Control Syst 20, 365–382 (2014). https://doi.org/10.1007/s10883-014-9225-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-014-9225-8

Keywords

Mathematics Subject Classification (2010)

Navigation