Skip to main content
Log in

Orbital stability of periodic waves for the nonlinear Schrödinger equation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

The nonlinear Schrödinger equation has several families of quasi-periodic traveling waves, each of which can be parametrized up to symmetries by two real numbers: the period of the modulus of the wave profile, and the variation of its phase over a period (Floquet exponent). In the defocusing case, we show that these travelling waves are orbitally stable within the class of solutions having the same period and the same Floquet exponent. This generalizes a previous work (Gallay and Haragus, J. Diff. Equations, 2007) where only small amplitude solutions were considered. A similar result is obtained in the focusing case, under a non-degeneracy condition which can be checked numerically. The proof relies on the general approach to orbital stability as developed by Grillakis, Shatah, and Strauss, and requires a detailed analysis of the Hamiltonian system satisfied by the wave profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angulo Pava J. (2007) Nonlinear stability of periodic travelling wave solutions to the Schrödinger and the modified Korteweg-de Vries equations. J. Differ. Equations 235(1): 1–30

    Article  MATH  MathSciNet  Google Scholar 

  2. Angulo Pava J., Bona J. L., Scialom M. (2006). Stability of cnoidal waves. Adv. Diff. Equations 11, 1321–1374

    MATH  Google Scholar 

  3. Arnold J. M. (1994) Stability theory for periodic pulse train solutions of the nonlinear Schrödinger equation. IMA J. Appl. Math. 52, 123–140

    Article  MathSciNet  Google Scholar 

  4. Benjamin T. (1972). The stability of solitary waves. Proc. R. Soc. Lond. Ser. A 328, 153–183

    MathSciNet  Google Scholar 

  5. Bona J. (1975). On the stability theory of solitary waves. Proc. R. Soc. Lond. Ser. A 344, 363–374

    MATH  MathSciNet  Google Scholar 

  6. Bridges Th., Rowlands G. (1994). Instability of spatially quasi-periodic states of the Ginzburg–Landau equation. Proc. R. Soc. Lond. Ser. A 444, 347–362

    Article  MATH  MathSciNet  Google Scholar 

  7. Cazenave Th., Lions P.-L. (1982). Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561

    Article  MATH  MathSciNet  Google Scholar 

  8. Cazenave Th., Weissler F. (1988) The Cauchy problem for the nonlinear Schrödinger equation in H 1. Manuscripta Math. 61, 477–494

    Article  MATH  MathSciNet  Google Scholar 

  9. Christov O. (1997). A note on the instability of spatially quasi-periodic states of the Ginzburg-Landau equation. Phys. Lett. A 228, 53–58

    Article  MATH  MathSciNet  Google Scholar 

  10. Doelman A., Gardner R.A., Jones C.K.R.T. (1995). Instability of quasiperiodic solutions of the Ginzburg-Landau equation. Proc. Roy. Soc. Edinburgh Sect. A 125, 501–517

    MATH  MathSciNet  Google Scholar 

  11. Eckmann J.-P., Gallay Th., Wayne C.E. (1995) Phase slips and the Eckhaus instability. Nonlinearity 8: 943–961

    Article  MATH  MathSciNet  Google Scholar 

  12. Gallay, Th., (1994). Existence et stabilité des fronts dans l’équation de Ginzburg-Landau à une dimension. PhD Thesis, Université de Genève.

  13. Gallay Th., Hărăguş M. (2007) Stability of small periodic waves for the nonlinear Schrödinger equations, J. Differ. Equations 234(2): 544–581

    Article  MATH  Google Scholar 

  14. Ginibre J., Velo G. (1979). On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J. Funct. Anal. 32, 1–32

    Article  MATH  MathSciNet  Google Scholar 

  15. Ginibre J., Velo G. (1985). The global Cauchy problem for the nonlinear Schrödinger equation revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 2, 309–327

    MATH  MathSciNet  Google Scholar 

  16. Grillakis M., Shatah J., Strauss W. (1987). Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74, 160–197

    Article  MATH  MathSciNet  Google Scholar 

  17. Grillakis M., Shatah J., Strauss W. (1990). Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal. 94, 308–348

    Article  MATH  MathSciNet  Google Scholar 

  18. Infeld E., Rowlands G. (1980) Three-dimensional stability of solutions to the nonlinear Schrödinger equation. Z. Physik B 37: 277–280

    Article  Google Scholar 

  19. Kato T. (1987). On nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 46, 113–129

    MATH  Google Scholar 

  20. Kudashev V.P., Mikhailovskii A.B. (1986). Instability of periodic waves described by the nonlinear Schrödinger equation. Sov. Phys. JETP 63, 972–979

    Google Scholar 

  21. Oh, M., Sandstede, B., and Yew, A. Stability of cnoidal waves for the focussing nonlinear Schrödinger equation with potential. In preparation.

  22. Rowlands G. (1974). On the stability of solutions of the Non-linear Schrödinger equation. IMA J Appl Math. 13, 367–377

    MATH  Google Scholar 

  23. Sulem, C., and Sulem, P.-L. (1999). The nonlinear Schrödinger equation. Self-focusing and wave collapse. Applied Mathematical Sciences 139, Springer, New York,

  24. Weinstein M. (1986). Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math. 39, 51–67

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhidkov, P. (2001). Korteweg-de Vries and nonlinear Schrödinger equations: qualitative theory. Lecture Notes in Mathematics Vol. 1756, Springer-Verlag, Berlin Heidelberg New York.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Gallay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallay, T., Hǎrǎgus, M. Orbital stability of periodic waves for the nonlinear Schrödinger equation. J Dyn Diff Equat 19, 825–865 (2007). https://doi.org/10.1007/s10884-007-9071-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-007-9071-4

Keywords

Navigation