Skip to main content
Log in

Invariant Manifolds for Random Dynamical Systems with Slow and Fast Variables

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

We consider random dynamical systems with slow and fast variables driven by two independent metric dynamical systems modeling stochastic noise. We establish the existence of a random inertial manifold eliminating the fast variables. If the scaling parameter tends to zero, the inertial manifold tends to another manifold which is called the slow manifold. We achieve our results by means of a fixed point technique based on a random graph transform. To apply this technique we need an asymptotic gap condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold L. (1998) Random Dynamical Systems. Springer, New York

    MATH  Google Scholar 

  2. Bensoussan A., Flandoli F. (1995) Stochastic inertial manifold. Stochastics Stochastics Rep. 53(1–2): 13–39

    MATH  MathSciNet  Google Scholar 

  3. Berglund N., Gentz B. (2003) Geometric singular perturbation theory for stochastic differential equations. J. Diff. Equat. 191, 1–54

    Article  MATH  MathSciNet  Google Scholar 

  4. Butuzov V.F., Kalachev L. V., Vasil’eva A.B. (1995) The Boundary Function Method for Singular Perturbation Problems. SIAM Studies in Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  5. Castaing, C., Valadier, M. (1977). Convex Analysis and Measurable Multifunctions. Lect. Notes in Math. 580. Springer-Verlag, Berlin, Heidelberg, New York.

  6. Da Prato G., Debussche A. (1996) Construction of stochastic inertial manifolds using backward integration. Stochastics Stochastics Rep. 59(3–4): 305–324

    MATH  MathSciNet  Google Scholar 

  7. Duan J., Lu K., Schmalfuß B. (2003). Invariant manifolds for stochastic partial differential equations. Ann. Probab. 31, 2109–2135

    Article  MATH  MathSciNet  Google Scholar 

  8. Eckhaus W. (1973). Matched Asymptotic Expansions and Singular Perturbations. North-Holland Publishing Comp., Amsterdam

    MATH  Google Scholar 

  9. Fenichel N. (1971) Persistence and smoothness of invariant manifolds for flows. Math. J., Indiana Univ. 21, 193–226

    Article  MATH  MathSciNet  Google Scholar 

  10. Fenichel N. (1979) Geometric singular perturbation theory for ordinary differential equations. J. Diff. Equat. 31, 53–98

    Article  MATH  MathSciNet  Google Scholar 

  11. Girya T.V., Chueshov I.D. (1995) Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems. Sb. Math. 186(1): 29–45

    Article  MATH  MathSciNet  Google Scholar 

  12. Hadamard J. (1901) Sur l’iteration et les solutions asymptotiques des equations differenttielles. Bull. Soc. Math. France 29, 224–228

    Google Scholar 

  13. Handrock-Meyer S., Kalachev L.V., Schneider K.R. (2001) A method to determine the dimension of long-time dynamics in multi-scale systems. J. Math. Chem. 30(2): 133–160

    Article  MATH  MathSciNet  Google Scholar 

  14. Kabanov, Y., and Pergamenshchikov, S. (2003). Two–Scale Stochastic Systems. Asymptotic Analysis and Control. Stochstic Modelling and Applied Probability 49. Springer, Berlin.

  15. Kevorkian J.K., Cole J.D. (1996) Multiple Scale and Singular Perturbation Methods. Springer-Verlag, New-York, Berlin

    MATH  Google Scholar 

  16. Koksch N., Siegmund S. (2002) Pullback attracting inertial manifolds for nonautonomous dynamical systems. J. Dyn. Diff. Equat. 14, 889–441

    Article  MATH  MathSciNet  Google Scholar 

  17. Lagerstrom, P. A. (1988). Matched Asymptotic Expansions. Applied Mathematical Sciences 76, Springer-Verlag, New York.

  18. Oono Y. (2000) Renormalization and asymptotics. RIMS Kokyuroku 1134, 1–18

    MATH  MathSciNet  Google Scholar 

  19. Pötzsche C., Siegmund S. (2004). C m-smoothness of invariant fiber bundles. Topol. Meth. Nonlinear Anal. 24(1): 107–145

    MATH  Google Scholar 

  20. Sanders J.A., Verhulst F. (1985) Averaging Methods in Nonlinear Dynamical Systems. Springer-Verlag, New York

    MATH  Google Scholar 

  21. Schmalfuß B. (1998) A random fixed point theorem and the random graph transformation. J. Math. Anal. Appl. 225(1): 91–113

    Article  MATH  MathSciNet  Google Scholar 

  22. Schneider K.R., Wilhelm T. (2000) Model reduction by extended quasi-steady-state approximation. J. Math. Biol. 40, 443–450

    Article  MATH  MathSciNet  Google Scholar 

  23. Segel L.A. (1989) On the validity of the steady state assumption of enzyme kinetics. SIAM Rev. 31, 446–477

    Article  MATH  MathSciNet  Google Scholar 

  24. Strygin V.V., Sobolev V.A. (1988) Separation of Motions by the Method of Integral Manifolds (in Russian). Nauka, Moscow

    Google Scholar 

  25. Wiggins S. (1994) Normally Hyperbolic Invariant Manifolds in Dynamical Systems. Springer-Verlag, New York

    MATH  Google Scholar 

  26. Zeidler E. (1985) Nonlinear Functional Analysis and its Applications, Vol. 1. Springer-Verlag, Berlin, Heidelberg, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Schmalfuss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmalfuss, B., Schneider, K.R. Invariant Manifolds for Random Dynamical Systems with Slow and Fast Variables. J Dyn Diff Equat 20, 133–164 (2008). https://doi.org/10.1007/s10884-007-9089-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-007-9089-7

Keywords

1991 Mathematics Subject Classifications

Navigation