Skip to main content
Log in

A Mixed Culture of Endophytic Fungi Increases Production of Antifungal Polyketides

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Secondary metabolites produced by endophytic microorganisms can provide benefits to host plants, such as stimulating growth and enhancing the plant’s resistance toward biotic and abiotic factors. During its life, a host plant may be inhabited by many species of endophytes within a restrictive environment. This condition can stimulate secondary metabolite production that improves microbial competition and may consequently affect both the neighboring microorganisms and the host plant. The interactions between the endophytes that co-habit the same host plant have been studied. However, the effect of these interactions on the host plant has remained neglected. When using mixed microbial cultures, we found that the endophytic fungus Alternaria tenuissima significantly increased the production of some polyketides, including antifungal stemphyperylenol in response to the endophytic Nigrospora sphaerica. Biological activity assays revealed that stemphyperylenol can cause cytotoxic effects against N. sphaerica, although no phytotoxicity was observed in the host plant Smallanthus sonchifolius, even at concentrations much higher than those toxic to the fungus. The polyketides produced by A. tenuissima may be important for the ecological relationships between endophyte-endophyte and endophytes-host plants in the natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdou R, Scherlach K, Dahse HM, Sattler I, Hertweck C (2010) Botryorhodines A-D, antifungal and cytotoxic depsidones from Botryosphaeria rhodina, an endophyte of the medicinal plant Bidens pilosa. Phytochemistry 71:110–116

    Article  PubMed  CAS  Google Scholar 

  • Andersen B, Solfrizzo M, Visconti A (1995) Metabolite profiles of common Stemphylium species. Mycol Res 99:672–676

    Article  CAS  Google Scholar 

  • Angell S, Bench BJ, Williams H, Watanable CMH (2006) Pyocyanin isolated from a marine microbial population: synergistic production between two distinct bacterial species and mode of action. Chem Biol 13:1349–1359

    Article  PubMed  CAS  Google Scholar 

  • Arnone A, Nasini G, Merlini L, Assante G (1986) Secondary mould metabolites. Part16. Stemphyltoxins, new induced perylenequinone metabolites from Stemphylium botrysum var. Lactucum. J Chem Soc Perkin Trans. I, 525–530

  • Asam S, Konitzer K, Schieberle P, Rychlik M (2009) Stable isotope dilution assays of alternariol and alternariol monomethyl ether in beverages. J Agric Food Chem 57:5152–5160

    Article  PubMed  CAS  Google Scholar 

  • Borges WSB, Borges KB, Bonato PS, Said S, Pupo MT (2009) Endophytic fungi: natural products, enzymes and biotransformation reactions. Curr Org Chem 13:1137–1163

    Article  CAS  Google Scholar 

  • Chaurasia B, Pandey A, Palni LMS, Trivedi P, Kumar B, Colvin N (2005) Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol Res 160:75–81

    Article  PubMed  CAS  Google Scholar 

  • Colmenares AJ, Aleu J, Durán-Patrón R, Collado IG, Hernández-Galán R (2002) The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. J Chem Ecol 28:997–1005

    Article  PubMed  CAS  Google Scholar 

  • Cueto M, Jensen PR, Kauffman CA, Fenical W, Lobkovsky E, Clardy J (2001) Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. J Nat Prod 64:1444–1446

    Article  PubMed  CAS  Google Scholar 

  • Daub ME, Herrero S, Chung KR (2005) Photoactivated perylenequinone toxins in fungal pathogenesis of plants. FEMS Microbiol Lett 252:197–206

    Article  PubMed  CAS  Google Scholar 

  • Degenkolb T, Heinze S, Schlegel B, Strobel G, Grafe U (2002) Formation of new lipoaminopeptides, acremostatins A, B, and C, by co-cultivation of Acremonium sp. Tbp-5 and Mycogone rosea DMS 12973. Biosci Biotech Bioch 66:883–886

    Article  CAS  Google Scholar 

  • Gallo MBC, Chagas FO, Almeida MO, Macedo CC, Cavalcanti BC, Barros FWA, Moraes MO, Costa-Lotuffo LV, Pessoa C, Bastos JK, Pupo MT (2009) Endophytic fungi found in association with Smallanthus sonchifolius (Asteraceae) as resourceful producers of cytotoxic bioactive natural products. J Basic Microb 49:142–151

    Article  CAS  Google Scholar 

  • Gao SS, Li XM, Wang BG (2009) Perylene derivatives produced by Alternaria alternata, an endophytic fungus isolated from Laurencia species. Nat Prod Commun 4:1477–1480

    PubMed  CAS  Google Scholar 

  • Glauser G, Gindro K, Fringeli J, Joffrey JP, Rudaz S, Wolfender JL (2009) Differential analysis of mycoalexins in confrontation zones of grapevine fungal pathogens by ultrahigh pressure liquid chromatography/time-of-flight mass spectrometry and capillary nuclear magnetic resonance. J Agr Food Chem 57:1127–1134

    Article  CAS  Google Scholar 

  • Gross H (2009) Strategies to unravel the function of orphan biosynthesis pathways: recent examples and future prospects. Appl Microbiol Biot 75:267–277

    Article  Google Scholar 

  • Gu W (2009) Bioactive metabolites from Alternaria brassicicola ML-P08, an endophytic fungus residing in Malus halliana. World J Microb Biot 25:1677–1683

    Article  CAS  Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity and implications of their occurrence. J Nat Prod 69:509–526

    Article  PubMed  CAS  Google Scholar 

  • Hertweck C (2009) Hidden biosynthetic treasures brought to light. Nat Chem Biol 5:450–452

    Article  PubMed  CAS  Google Scholar 

  • Hradil C, Hallock YF, Clardy J, Kenfield DS, Strobel G (1989) Phytotoxins from Alternaria cassiae. Phytochemistry 28:73–75

    Article  CAS  Google Scholar 

  • Hu D, Liu M, Xia X, Chen D, Zhao F, Ge M (2008) Preparative isolation and purification of altertoxin I from an Alternaria sp. by HSCCC. Chromatographia 67:863–867

    Article  CAS  Google Scholar 

  • Kjer J, Wray V, Edrada-Ebel RA, Ebel R, Pretsch A, Lin W, Proksch P (2009) Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the mangrove plant Sonneratia alba. J Nat Prod 72:2053–2057

    Article  PubMed  CAS  Google Scholar 

  • Knight V, Sanglier JJ, Ditulio D, Braccili S, Bonner P, Waters J, Hughes D, Zhang L (2003) Diversifying microbial natural products for drug discovery. Appl Microbiol Biot 62:446–458

    Article  CAS  Google Scholar 

  • Koch K, Podlech J, Pfeiffer E, Metzler M (2005) Total synthesis of Alternariol. J Org Chem 70:3275–3276

    Article  PubMed  CAS  Google Scholar 

  • Krohn K, Biele C, Aust HJ, Draeger S, Schulz B (1999a) Herbarulide, a ketodivinyllactone steroid with an unprecedented homo-6-oxaergostane skeleton from the endophytic fungus Pleospora herbarum. J Nat Prod 62:629–630

    Article  PubMed  CAS  Google Scholar 

  • Krohn K, John M, Aust HJ, Draeger S, Schulz B (1999b) Biologically active metabolites from fungi. 13. Stemphytriol, a new perylene derivative from Monodictys fluctuata. Nat Prod Lett 14:31–34

    Article  CAS  Google Scholar 

  • Kurosawa K, Ghiviriga I, Sambandan TG, Lessard PA, Barbara JE, Rha C, Sinskey AJ (2008) Rhodostreptomycins, antibiotics biosynthesized following horizontal gene transfer from Streptomyces padanus to Rhodococcus fascians. J Am Chem Soc 130:1126–1127

    Article  PubMed  CAS  Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Cai XL, Yang H, Xia XK, Guo ZY, Yuan J, Li MF, She ZG, Lin YC (2010) The bioactive metabolites of the mangrove endophytic fungus Talaromyces sp. ZH-154 isolated from Kandelia candel (L.) Druce. Planta Med 76:185–189

    Article  PubMed  CAS  Google Scholar 

  • Logrieco A, Moretti A, Solfrizzo M (2009) Alternaria toxins and plant diseases: an overview of origin, occurrence and risks. World Mycotoxin J 2:129–140

    Article  CAS  Google Scholar 

  • Müller FM, Kurzai O, Hacker J, Frosch M, Mühlschlegel F (2001) Effect of the growth medium on the in vitro antifungal activity of micafungin (FK-463) against clinical isolates of Candida dubliniensis. J Antimicrob Chemoth 48:713–715

    Article  Google Scholar 

  • Oh DC, Jensen PR, Kauffman CA, Fenical W (2005) Libertellenones A-D: induction of cytotoxic diterpenoid biosynthesis by marine microbial competition. Bioorgan Med Chem 13:5267–5273

    Article  CAS  Google Scholar 

  • Oh DC, Kauffman CA, Jensen PR, Fenical W (2007) Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J Nat Prod 70:515–520

    Article  PubMed  CAS  Google Scholar 

  • Okuno T, Natsume I, Sawai K, Sawamura K, Furusaki A, Matsumoto T (1983) Structure of antifungal and phytotoxic pigments produced by Alternaria spp. Tetrahedron Lett 24:5653–5656

    Article  CAS  Google Scholar 

  • Park HB, Kwon HC, Lee CH, Yang HO (2009) Glionitrin A, an antibiotic-antitumor metabolite derived from competitive interaction between abandoned mine microbes. J Nat Prod 72:248–252

    Article  PubMed  CAS  Google Scholar 

  • Pettit RK (2009) Mixed fermentation for natural product drug discovery. Appl Microbiol Biot 83:19–25

    Article  CAS  Google Scholar 

  • Robeson D, Strobel G, Matusumoto GK, Fisher EL, Chen MH, Clardy J (1984) Alteichin: an unusual phytotoxin from Alternaria eichorniae, a fungal pathogen of water hyacinth. Experientia 40:1248–1250

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez MA, Cabrera G, Godeas A (2006) Cyclosporine A from a nonpathogenic Fusarium oxysporum suppressing Sclerotinia sclerotiorum. J Appl Microbiol 100:575–586

    Article  PubMed  Google Scholar 

  • Rosa LH, Tabanca N, Techen N, Pan Z, Wedge DE, Moraes RM (2012) Antifungal activity of extracts from endophytic fungi associated with Smalanthus maintained in vitro as autotrophic cultures and as pot plants in the greenhouse. Can J Microbiol 58:1202–1211

    Article  PubMed  CAS  Google Scholar 

  • Saikkonen K, Gundel PE, Helander M (2013) Chemical ecology mediated by fungal endophytes in grasses. J Chem Ecol 39:962–968

    Article  PubMed  CAS  Google Scholar 

  • Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753–1760

    Article  PubMed  CAS  Google Scholar 

  • Slattery M, Rajbhandari I, Wesson K (2001) Competition-mediated antibiotic induction in the marine bacterium Streptomyces tenjimariensis. Microb Ecol 41:90–96

    PubMed  CAS  Google Scholar 

  • Tan N, Tao Y, Pan J, Wang S, Xu F, She Z, Lin Y, Jones EBG (2008) Isolation, structure elucidation, and mutagenicity of four alternariol derivatives produced by the mangrove endophytic fungus no. 2240. Chem Nat Compd 44:296–300

    Article  CAS  Google Scholar 

  • Zhu F, Lin Y (2006) Marinamide, a novel alkaloid and its methyl ester produced by the application of mixed fermentation technique to two mangrove endophytic fungi from the South China Sea. Chin Sci Bull 51:1426–1430

    Article  CAS  Google Scholar 

  • Zhu F, Lin Y, Ding J, Wang X, Huang L (2007) Secondary metabolites of two marine-derived mangrove endophytic fungi (strain nos. 1924# and 3893#) by mixed fermentation. Chem Ind For Prod 27:8–10

    Google Scholar 

  • Zuck KM, Shipley S, Newman DJ (2011) Induced production of n-formyl alkaloids from Aspergillus fumigatus by co-culture with Streptomyces peucetius. J Nat Prod 74:1653–1657

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant#2008/09540-0, São Paulo Research Foundation (FAPESP). We also thank “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq), and “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES) for financial support. F.O.C acknowledges the grants #2007/06057-3, 2009/17695-6 (FAPESP) awarded during her PhD studies. This research is part of the “Instituto Nacional de Biotecnologia Estrutural e Química Medicinal em Doenças Infecciosas (INCT-INBEQMeDI)”, “Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos” (NAP-NPNNS, USP) and Center for Innovation in Biodiversity and Drug Discovery (CEPID-CIBFar, grant#2013/07600-3 FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mônica T. Pupo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2.39 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chagas, F.O., Dias, L.G. & Pupo, M.T. A Mixed Culture of Endophytic Fungi Increases Production of Antifungal Polyketides. J Chem Ecol 39, 1335–1342 (2013). https://doi.org/10.1007/s10886-013-0351-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0351-7

Keywords

Navigation