Skip to main content
Log in

Numerical Investigation of Laminar Heat Transfer of Nanofluid-Cooled Mini-Rectangular Fin Heat Sinks

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The single- and two-phase models in three-dimensional analysis are applied to study laminar convective heat transfer of nanofluids in a minichannel heat sink. The nanofluids with suspending TiO 2 nanoparticles of average diameter 21 nm are prepared by ultrasound with a constant nanoparticle concentration of 0.4 vol.% without using surfactants. Experiments are carried out to verify the predicted results. It is shown that the results obtained from the two-phase model are more precise in comparison with the experimental results than those from the single-phase model. The predicted heat transfer coefficients for nanofluids are higher than those for water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. L. Xie, Z. J. Liu, Y. L. He, and W. Q. Tao, Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink, Appl. Therm. Eng., 29, 64–74 (2009).

    Article  Google Scholar 

  2. H. A. Mohammed, P. Gunnasegaran, and N. H. Shuai, Numerical simulation of heat transfer enhancement in wavy microchannel heat sink, Int. Commun. Heat Mass Transf., 38, 63–68 (2011).

    Article  Google Scholar 

  3. A. J. Shkarah, M. Y. B. Sulaiman, M. R. B. H. Ayob, and H. Togun, A 3D numerical study of heat transfer in a singlephase micro-channel heat sink using graphene, aluminum and silicon as substrates, Int. Commun. Heat Mass Transf., 48, 108–115 (2013).

    Article  Google Scholar 

  4. Y. Fan, P. S. Lee, L. W. Jin, and B. W. Chua, A simulation and experimental study of fluid flow and heat transfer on cylindrical oblique-finned heat sink, Int. J. Heat Mass Transf., 61, 62–72 (2013).

    Article  Google Scholar 

  5. J. Koo and C. Kleinstreuer, Laminar nanofluid fl ow in microheat-sinks, Int. J. Heat Mass Transf., 48, 2652–2661 (2005).

    Article  MATH  Google Scholar 

  6. R. Chein and G. Huang, Analysis of microchannel heat sink performance using nanofluids, Appl. Therm. Eng., 25, 3104–3114 (2005).

    Article  Google Scholar 

  7. S. P. Jang and S. U. S. Choi, Cooling performance of a microchannel heat sink with nanofl uids, Appl. Therm. Eng., 26, 2457–2463 (2006).

    Article  Google Scholar 

  8. S. W. Kang, W. C. Wei, S. H. Tsai, and S. Y. Yang, Experimental investigation of silver nanofl uid on heat pipe thermal performance, Appl. Therm. Eng., 26, 2377–2382 (2006).

    Article  Google Scholar 

  9. R. Chein and J. Chuang, Experimental microchannel heat sink performance studies using nanofluids, Int. J. Therm. Sci., 46, 57–66 (2007).

    Article  Google Scholar 

  10. J. Lee and I. Mudawar, Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels, Int. J. Heat Mass Transf., 50, 452–463 (2007).

    Article  Google Scholar 

  11. C. T. Nguyen, G. Roy, C. Gauthier, and N. Galanis, Heat transfer enhancement using Al2O3–water nanofluids for an electronic liquid cooling system, Appl. Therm. Eng., 27, 1501–1506 (2007).

    Article  Google Scholar 

  12. C. H. Chen, Forced convection heat transfer in microchannel heat sinks, Int. J. Heat Mass Transf., 50, 2182–2189 (2007).

    Article  MATH  Google Scholar 

  13. T. H. Tsai and R. Chein, Performance analysis of nanofluid-cooled microchannel heat sinks, Int. J. Heat Fluid Flow, 28, 1013–1026 (2007).

    Article  Google Scholar 

  14. C. Kleinstreuer, J. Li, and J. Koo, Microfl uidics of nano-drug delivery, Int. J. Heat Mass Transf., 51, 5590–5597 (2008).

    Article  MATH  Google Scholar 

  15. J. Li and C. Kleinstreuer, Thermal performance of nanofluid fl ow in microchannels, Int. J. Heat Fluid Flow, 29, 1221–1232 (2008).

    Article  Google Scholar 

  16. Y. He, Y. Men, Y. Zhao, H. Lu, and Y. Ding, Numerical investigation into the convective heat transfer of TiO2 nanofluids fl owing through a straight tube under the laminar fl ow conditions, Appl. Therm. Eng., 29, 1965–1972 (2009).

    Article  Google Scholar 

  17. A. Kamyar, R. Saidur, and M. Hasanuzzaman, Application of computational fluid dynamics (CFD) for nanofluids, Int. J. Heat Mass Transf., 55, 4104–4115 (2012).

    Article  Google Scholar 

  18. M. Kalteh, A. Abbassi, M. Saffar-Avval, A. Frijns, and A. Darhuber, Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink, Appl. Therm. Eng., 36, 260–268 (2012).

    Article  Google Scholar 

  19. M. K. Moraveji and R. M. Ardehali, CFD modeling (comparing single- and two-phase approach) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink, Int. Commun. Heat Mass Transf., 44, 157–164 (2013).

    Article  Google Scholar 

  20. N. R. Kuppusamy, H. A. Mohammed, and C. W. Lim, Numerical investigation of trapezoidal grooved microchannel heat sink using nanofluids, Thermochim. Acta, 573, 39–56 (2013).

    Article  Google Scholar 

  21. G. Huminic and A. Huminic, Numerical analysis of laminar heat transfer of nanofluids in a flattened tube, Int. Commun. Heat Mass Transf., 44, 52–57 (2013).

    Article  Google Scholar 

  22. D. Lelea and I. Laza, The water based Al2O3 nanofluid flow and heat transfer in tangential microtube heat sink with multiple inlets, Int. J. Heat Mass Transf., 69, 264–275 (2014).

    Article  Google Scholar 

  23. H. W. Coleman and W. G. Steele, Experimental and Uncertainty Analysis for Engineers, John Wiley & Sons, New York (1989).

    Google Scholar 

  24. B. C. Pak and Y. I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transf., 11, 151–170 (1998).

    Article  Google Scholar 

  25. D. A. Drew and S. L. Passman, Theory of Multicomponent Fluids, Springer, Berlin (1999).

    Book  Google Scholar 

  26. Y. Xuan and W. Roetzel, Conceptions of heat transfer correlation of nanofluids, Int. J. Heat Mass Transf., 43, 3701–3707(2000).

    Article  MATH  Google Scholar 

  27. J. C. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed., Clarendon Press, Oxford University, UK (1881).

    Google Scholar 

  28. M. Manninen, V. Taivassalo, and S. Kallio, On the Mixture Model for Multiphase Flow, VTT Publications 288, Technical Research Center of Finland (1996).

  29. L. Schiller and A. Naumann, A drag coefficient correlation, Z. Ver. Dtsch. Ing., 77, 318–320 (1935).

    Google Scholar 

  30. J. P. Van Doormal and G. D. Raithby, Enhancements of the SIMPLEC method for predicting incompressible fluid flows, Numer. Heat Transf., 7, 147–163 (1984).

    Google Scholar 

  31. A. Behzadmehr, M. Saffar-Avval, and N. Galanis, Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach, Int. J. Heat Fluid Flow, 28, 211–219 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paisarn Naphon.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 88, No. 3, pp. 642–650, May–June, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naphon, P., Nakharintr, L. Numerical Investigation of Laminar Heat Transfer of Nanofluid-Cooled Mini-Rectangular Fin Heat Sinks. J Eng Phys Thermophy 88, 666–675 (2015). https://doi.org/10.1007/s10891-015-1235-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-015-1235-1

Keywords

Navigation