Skip to main content
Log in

Discrete Alfvén Eigenmodes in ITER Plasmas with Bootstrap Current

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

There is an important relationship between gradient of pressure and the bootstrap current. Due to the α (a gradient scale of pressure) is the essential condition to trap discrete Alfvén eigenmodes (α-induced Alfvén eigenmodes, namely αTAEs), here, we focus on the relationship between αTAEs and bootstrap current with a magnetohydrodynamic (MHD) simulation code and a gyrokinetic-MHD hybrid simulation code in two typical scenarios in ITER, and compare these typical scenarios with two ordinary scenarios about physical characteristics of discrete Alfvén eigenmodes. These discrete Alfvén eigenmodes are always lying in the region of high bootstrap current. However, they are not corresponding absolutely in pure radio frequency scenario (one of typical scenarios) because of large-α. Moreover, we illustrate the multiple branches of discrete Alfvén eigenmodes in those typical scenarios, and find high-order modes trapped by the lower potential well. Discrete Alfvén eigenmodes exist widely in ITER scenarios with bootstrap current. However, discrete Alfvén eigenmodes are quasi-marginally stable in MHD description and could be readily destabilized by energetic particles in hybrid simulation via wave-particle resonances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.Z. Cheng, L. Chen, M.S. Chance, Ann. Phys. 161, 21 (1985)

    Article  ADS  Google Scholar 

  2. L. Chen, Phys. Plasmas 1, 1519 (1994)

    Article  ADS  Google Scholar 

  3. M.N. Rosenbluth, P.H. Rutherford, Phys. Rev. Lett. 34, 1428 (1975)

    Article  ADS  Google Scholar 

  4. S. Hu, L. Chen, Phys. Plasmas 11, 1 (2004)

    Article  ADS  Google Scholar 

  5. S. Hu, L. Chen, Plasma Phys. Controll. Fusion 47, 1251 (2005)

    Article  ADS  Google Scholar 

  6. L.B. Yao, S.H. Hu, Y.R. Wang et al., Nucl. Fusion Plasma Phys. 32, 1 (2012). (in China)

    Google Scholar 

  7. J. Wang, S.H. Hu, Q.P. Dai et al., Chin. Phys. B 19, 9 (2010)

    Google Scholar 

  8. Y.R. Wang, S.H. Hu, L.B. Yao et al., Nucl. Fusion Plasma Phys. 32, 2 (2012). (in China)

    Google Scholar 

  9. Q.P. Dai, S.H. Hu, Sci. Technol. Eng. 10, 12 (2010). (in China)

    Google Scholar 

  10. J. Wang, L.D. Hu, S.H. Hu et al., Acta. Phys. Sin. 62, 3 (2013). (in China)

    Google Scholar 

  11. X.M. Guo, L. Hu, S.H. Hu, Phys. Eng. 25, 2 (2015). (in China)

    Google Scholar 

  12. X.C. Yan, S.H. Hu, H. Wu, Sci. Chin. Ser. G 47, 6 (2017). (in China)

    Google Scholar 

  13. J. Jacquinot, B. Beaumont, G.T. Hoang et al., AIP Conf. Proc. 933, 13 (2007)

    Article  ADS  Google Scholar 

  14. D. Bora, B. Beaumont, R. Goulding et al., AIP Conf. Proc. 933, 25 (2007)

    Article  ADS  Google Scholar 

  15. F.M. Poli, C.E. Kessel, M.S. Chance et al., Nucl. Fusion 52, 063027 (2012)

    Article  ADS  Google Scholar 

  16. W.A. Houlberg, C. Gormezano, J.F. Artaud et al., Nucl. Fusion 45, 1309 (2005)

    Article  ADS  Google Scholar 

  17. G. Giruzzi, J.M. Park, M. Murakami, et al, in Proceedings of 22nd IAEA Fusion Energy Conference on IT/P6-4 (2008)

  18. F. Troyon, R. Gruber, H. Saurenmann et al., Plasma Phys. Control. Fusion 26, 209 (1984)

    Article  ADS  Google Scholar 

  19. L. Chen, A. Hasegawa, J. Geophys. Res. 96, 1503 (1991)

    Article  ADS  Google Scholar 

  20. R.J. Bickerton, J.W. Connor, J.B. Taylor, Nat. Phys. Sci. 229, 110 (1971)

    Article  ADS  Google Scholar 

  21. M. Kikuchi, M. Azumi, Plasma Phys. Control. Fusion 37, 1215 (1995)

    Article  ADS  Google Scholar 

  22. T. Ozeki, M. Azumi, Y. Ishii et al., Plasma Phys. Control. Fusion 39, A371 (1997)

    Article  Google Scholar 

  23. ITER Physics Basis Editors, ITER Physics Expert Group Chairs and Co-Chairs and ITER Joint Central Team and Physics Integration Unit, Nucl. Fusion 39, 2627 (1999)

    Article  ADS  Google Scholar 

  24. Y. Shimomura, Y. Murakami, A.R. Polevoi et al., Plasma Phys. Control. Fusion 43, A385 (2001)

    Article  Google Scholar 

  25. B.J. Green, ITER international team and participant teams. Plasma Phys. Control. Fusion 45, 687 (2003)

    Article  ADS  Google Scholar 

  26. F.M. Poli, C.E. Kessel, P.T. Bonoli et al., Nucl. Fusion 54, 073007 (2014)

    Article  ADS  Google Scholar 

  27. Y.C. Lee, J.W. Van Dam, in Proceedings of the Finite Beta Theory Workshop, U. S. DOECONF-7709167, p. 93 (1977)

  28. J.W. Connor, R.J. Hastie, J.B. Taylor, Proc. R. Soc. Lond. A 365, 1 (1979)

    Article  ADS  Google Scholar 

  29. J.W. Connor, R.J. Hastie, J.B. Taylor, Phys. Rev. Lett. 40, 396 (1978)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is mainly supported by the National Natural Science Foundation of China (Grant Nos. 11645004 and 11275053) and Innovation Fund for graduate students of Guizhou University (Grant No. Science and Engineering for graduate students 2017035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Hu, S., He, Q. et al. Discrete Alfvén Eigenmodes in ITER Plasmas with Bootstrap Current. J Fusion Energ 37, 238–246 (2018). https://doi.org/10.1007/s10894-018-0175-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-018-0175-0

Keywords

Navigation