Skip to main content
Log in

Synthesis, Crystal Structure, DNA-binding Properties and Cytotoxic Activity of the Copper (II) Complex Involving Xanthone

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

1, 8-(3, 6, 9-Trioxaundecane-1, 11-diyldioxy)xanthone (L), and its new Cu (II) complex [Cu·L·(CH3CN)2](ClO4)2 have been synthesized and characterized by 1H NMR, electrospray mass spectra (ESI-MS), elemental analyses, infrared spectra (IR) and X-ray single crystal diffraction. The crystal structure of complex shows that Cu (II) ion is encapsulated within the macrocycle of L. The geometry around copper is a distorted square bipyramid with two acetonitrile molecules at axial position, and four macrocyclic oxygens including the carbonyl oxygen on the equatorial positions. The interaction of Cu (II) complex with calf thymus DNA (ct DNA) has been investigated by spectrophotometric titrations, ethidium bromide (EB) displacement experiments, circular dichroism (CD) spectra and viscosity measurements. Rresults indicate that Cu (II) complex can intercalate into the DNA base pairs by the plane of xanthone ring. Furthermore, the Cu (II) complex was tested against tumor cell lines including ECA109, SGC7901and GLC-82 by MTT (microculture tetrazolium) method. The studies of DNA-binding agree with the effects on the inhibition of tumor cells in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu CL, Wang M, Zhang T, Sun HZ (2004) DNA hydrolysis promoted by di- and multi-nuclear metal complexes. Coord Chem Rev 248:147–168. doi:10.1016/j.cct.2003.11.002

    Article  CAS  Google Scholar 

  2. Metcalfe C, Thomas JA (2003) Kinetically inert transition metal complexes that reversibly bind to DNA. Chem Soc Rev 32:215–224. doi:10.1039/b201945k

    Article  CAS  PubMed  Google Scholar 

  3. Keenea FR, Smitha JA, Collins, JG (2009) Metal complexes as structure-selective binding agents for nucleic acids. Coord Chem Rev (in press). doi:10.1016/j.ccr.2009.01.004

  4. Erkkila KE, Odom DT, Barton JK (1999) Recognition and reaction of metallointercalators with DNA. Chem Rev 99:2777–2796. doi:10.1021/cr9804341

    Article  CAS  PubMed  Google Scholar 

  5. Jiang Q, Xiao N, Shi PF, Zhua YG, Guo ZJ (2007) Design of artificial metallonucleases with oxidative mechanism. Coord Chem Rev 251:1951–1972. doi:10.1016/j.ccr.2007.02.013

    Article  CAS  Google Scholar 

  6. Yang P, Guo ML (1999) Interactions of organometallic anticancer agents with nucleotides and DNA. Coord Chem Rev 185–186:189–211. doi:10.1016/S0010-8545(98)00268-9

    Article  Google Scholar 

  7. Carter MT, Rodriguez M, Bard AJ (1989) Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2′-bipyridine. J Am Chem Soc 111:8901–8911. doi:10.1021/ja00206a020

    Article  CAS  Google Scholar 

  8. Reddy PR, Rao KS, Satyanarayana B (2006) Synthesis and DNA cleavage properties of ternary Cu(II) complexes containing histamine and amino acids. Tetrahedron Lett 47:7311–7315. doi:10.1016/j.tetlet.2006.08.033

    Article  CAS  Google Scholar 

  9. Kumar RS, Arunachalam S, Periasamy VS, Preethy CP, Riyasdeen A, Akbarsha MA (2009) Surfactant–cobalt(III) complexes: Synthesis, critical micelle concentration (CMC) determination, DNA binding, antimicrobial and cytotoxicity studies. J Inorg Biochem 103:117–127. doi:10.1016/j.jinorgbio.2008.09.010

    Article  CAS  PubMed  Google Scholar 

  10. Ji LN, Zhou XH, Liu JG (2001) Shape- and enantioselective interaction of Ru(II)/Co(III) polypyridyl complexes with DNA. Coord Chem Rev 216:513–536. doi:10.1016/S0010-8545(01)00338-1

    Article  Google Scholar 

  11. Li YP, Wu YB, Zhao J, Yang PJ (2007) DNA-binding and cleavage studies of novel binuclear copper(II) complex with 1, 1′-dimethyl-2, 2′-biimidazole ligand. Inorg Biochem 101:283–290. doi:10.1016/j.jinorgbio.2006.10.004

    Article  CAS  Google Scholar 

  12. Zuber G Jr, Quada JC, Hecht SM (1998) Sequence Selective Cleavage of a DNA Octanucleotide by Chlorinated Bithiazoles and Bleomycins. J Am Chem Soc 120:9368–9369. doi:10.1021/ja981937r

    Article  CAS  Google Scholar 

  13. Li VS, Choi D, Wang Z, Jimenez LS, Tang MS, Kohn H (1996) Role of the C-10 Substituent in Mitomycin C-1-DNA Bonding. J Am Chem Soc 118:2326–2331. doi:10.1021/ja953871v

    Article  CAS  Google Scholar 

  14. Zhang H, Liu CS, Bu XH, Yang M (2005) Synthesis, crystal structure, cytotoxic activity and DNA-binding properties of the copper (II) and zinc (II) complexes with 1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene. J Inorg Biochem 99:1119–1125. doi:10.1016/j.jinorgbio.2005.02.005

    Article  CAS  PubMed  Google Scholar 

  15. Zeng YB, Yang N, Liu WS, Tang N (2003) Synthesis, characterization and DNA-binding properties of La(III) complex of chrysin. J Inorg Biochem 97:258–264. doi:10.1016/S0162-0134(03)00313-1

    Article  CAS  PubMed  Google Scholar 

  16. Wang BD, Yang ZY, Wang Q, Cai TK, Crewdson P (2006) Synthesis, characterization, cytotoxic activities, and DNA-binding properties of the La(III) complex with Naringenin Schiff-base. Bioorg Med Chem 14:1880–1888. doi:10.1016/j.bmc.2005.10.031

    Article  CAS  PubMed  Google Scholar 

  17. Zhou J, Wang LF, Wang JY, Tang N (2001) Synthesis, characterization, antioxidative and antitumor activities of solid quercetin rare earth(III) complexes. J Inorg Biochem 83:41–48. doi:10.1016/S0162-0134(00)00128-8

    Article  CAS  PubMed  Google Scholar 

  18. Nakatani K, Nakahata N, Arakawa T, Yasuda H, Ohizumi Y (2002) Inhibition of cyclooxygenase and prostaglandin E2 synthesis by γ-mangostin, a xanthone derivative in mangosteen, in C6 rat glioma cells. Biochem Pharmacol 63:73–79. doi:10.1016/S0006-2952(01)00810-3

    Article  CAS  PubMed  Google Scholar 

  19. Wang LW, Kang JJ, Chen IJ, Teng CM, Lin CN (2002) Antihypertensive and vasorelaxing activities of synthetic xanthone derivatives. Bioorg Med Chem 10:567–572. doi:10.1016/S0968-0896(01)00315-7

    Article  PubMed  Google Scholar 

  20. Liu Y, Ma L, Chen WH, Wang B, Xu ZL (2007) Synthesis of xanthone derivatives with extended π-systems as α-glucosidase inhibitors: Insight into the probable binding mode. Bioorg Med Chem 15:2810–2814. doi:10.1016/j.bmc.2007.02.030

    Article  CAS  PubMed  Google Scholar 

  21. Jackson WT, Boyd RJ, Froelich LL, Gapinski DM, Mallett BE, Sawyer JS (1993) Design, synthesis, and pharmacological evaluation of potent xanthone dicarboxylic acid leukotriene B4 receptor antagonists. J Med Chem 36:1726–1734. doi:10.1021/jm00064a006

    Article  CAS  PubMed  Google Scholar 

  22. Mills OS, Mooney NJ, Robinson PM, Watt CF, Box BG (1995) Preparation and properties of some crown ethers incorporating stable carbocations. J Chem Soc Perkin Trans 2 697–706. doi:10.1039/p29950000697

  23. CSJ (ed) (1986) Synthetical handbook for inorganic compounds II. Chemical Industry, Beijing

  24. Michael TC, Marisol R, Allen JB (1989) Voltammetric studies of the interaction of metal chelates with DNA. 2. tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2′-bipyridine. J Am Chem Soc 111:8901–8911. doi:10.1021/ja00206a020

    Article  Google Scholar 

  25. Kumar CV, Asuncion EH (1993) DNA binding studies and site selective fluorescence sensitization of an anthryl probe. J Am Chem Soc 115:8547–8553. doi:10.1021/ja00072a004

    Article  CAS  Google Scholar 

  26. Beddoes RS, Cox BG, Mills OS, Mooney NJ, Watt CF, Kirkland D, Martin D (1996) Structures and complexing properties of crown ethers incorporating 1,8-dioxyxanthones. J Chem Soc Perkin Trans 2 2091–2098. doi:10.1039/p29960002091

  27. Nakamato K (1978) Infrared and raman spectra of inorganic and coordination compound, 3rd edn. Wiley-Interscience, New York

    Google Scholar 

  28. Bloomfield VA, Crothers DM, Tinoco I Jr (1974) Phsical chemistry of nucleic acids. Harper & Row, New York

    Google Scholar 

  29. Wolf A, Shimer GH Jr, Meehan T (1987) Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry 26:6392–6396. doi:10.1021/bi00394a013

    Article  Google Scholar 

  30. Zhou CY, Zhao J, Wu YB, Yin CX, Yang P (2007) Synthesis, characterization and studies on DNA-binding of a new Cu(II) complex with N1, N8-bis(l-methyl-4-nitropyrrole-2-carbonyl)triethylenetetramine. J Inorg Biochem 101:10–18. doi:10.1016/j.jinorgbio.2006.07.011

    Article  CAS  PubMed  Google Scholar 

  31. Zhou QH, Yang P (2006) Crystal structure and DNA-binding studies of a new Cu(II) complex involving benzimidazole. Inorg Chim Acta 359:1200–1206. doi:10.1016/j.ica.2005.11.003

    Article  CAS  Google Scholar 

  32. Boger DL, Fink BE, Brunette SR, Tse WC, Hedrick MP (2001) A Simple, high-resolution method for establishing DNA binding affinity and sequence selectivity. J Am Chem Soc 123:5878–5891. doi:10.1021/ja010041a

    Article  CAS  PubMed  Google Scholar 

  33. Satyanarayana S, Dabrowiak JC, Chaires JB (1992) Neither Δ- nor Λ-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. Biochemistry 31:9319–9324. doi:10.1021/bi00154a001

    Article  CAS  PubMed  Google Scholar 

  34. Lippard SJ (1978) Platinum complexes: probes of polynucleotide structure and antitumor drugs. Acc Chem Res 11:211–217. doi:10.1021/ar50125a006

    Article  CAS  Google Scholar 

  35. Kumar CV, Barton JK, Turro NJ (1985) Photophysics of ruthenium complexes bound to double helical DNA. J Am Chem Soc 107:5518–5523. doi:10.1021/ja00305a032

    Article  CAS  Google Scholar 

  36. Eftink MR, Ghiron CA (1981) Fluorescence quenching studies with proteins. Anal Biochem 114:199–227. doi:10.1016/0003-2697(81)90474-7

    Article  CAS  PubMed  Google Scholar 

  37. Ivanov VI, Minchenkova LE, Schyolkina AK, Poletayev AI (1973) Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers 12:89–110. doi:10.1002/bip. 1973.360120109

    Article  CAS  PubMed  Google Scholar 

  38. Lincoln P, Tuite E, Nordén B (1997) Short-Circuiting the Molecular Wire: Cooperative Binding of Δ-[Ru(phen)2d ppz]2+ and Δ-[Rh(phi)2bipy]3+ to DNA. J Am Chem Soc 119:1454–1455. doi:10.1021/ja9631965

    Article  CAS  Google Scholar 

  39. Nordén B, Tjerneld F (1982) Structure of methylene blue-DNA complexes studied by linear and circular dichroism spectroscopy. Biopolymers 21:1713–1734. doi:10.1002/bip. 360210904

    Article  PubMed  Google Scholar 

  40. Zou XH, Ye BH, Li H, Liu JG, Xiong Y, Ji LN (1999) Mono- and bi-nuclear ruthenium(II) complexes containing a new asymmetric ligand 3-(pyrazin-2-yl)-as-triazino [5,6-f ]1,10-phenanthroline: synthesis, characterization and DNA-binding properties. J Chem Soc Dalton Trans 1423–1428. doi:10.1039/a900064j

  41. Sigman DS, Mazumder A, Perrin DM (1993) Chemical nucleases. Chem Rev 93:2295–2316. doi:10.1021/cr00022a011

    Article  CAS  Google Scholar 

  42. Eriksson M, Leijon M, Hiort C, Norden B, Gradslund A (1994) Binding of Δ- and Λ-[Ru(phen)3]2+ to [d(CGCGATCGCG)]2 Studied by NMR. Biochemistry 33:5031–5040. doi:10.1021/bi00183a005

    Article  CAS  PubMed  Google Scholar 

  43. Xiong Y, He XF, Zou XH, Wu JZ, Chen XM, Ji LN, Li RH, Zhou JY, Yu KB (1999) Interaction of polypyridyl ruthenium(II) complexes containing non-planar ligands with DNA. J Chem Soc Dalton Trans 19–23. doi:10.1039/a806170j

Download references

Acknowledgement

We are grateful to the School of Pharmacy, Lanzhou University for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, R., Wang, P. & Tang, N. Synthesis, Crystal Structure, DNA-binding Properties and Cytotoxic Activity of the Copper (II) Complex Involving Xanthone. J Fluoresc 19, 1073–1082 (2009). https://doi.org/10.1007/s10895-009-0507-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0507-6

Keywords

Navigation