Skip to main content
Log in

A Selective Spectrofluorometric Determination of Micromolar Level of Cyanide in Water Using Naphthoquinone Imidazole Boronic-Based Sensors and a Surfactant Cationic CTAB Micellar System

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We developed a new spectrofluorometric method for qualitative and quantitative determination of cyanide in water using the incorporation of naphthoquinone imidazole boronic-based sensors (m -NQB and p -NQB) and a cationic surfactant, certyltrimethyl ammonium bromide (CTAB). This micellar system exhibited great selectivity for cyanide detection with an assistance of the cationic surface of micelle. The interaction of boronic acid of the sensor toward cyanide in CTAB micellar media gave a quantitative measure of cyanide concentration in the micromolar level. Under the optimal condition, fluorescence intensity at 460 nm of m -NQB and p -NQB provided two sets of linear ranges, 0.5–15 μM and 20–40 μM and the limit of cyanide detection of 1.4 μM. Hence, both sensors in CTAB aqueous micellar system offered a considerably promising cyanide detection with 1000–fold enhancement of the detection limit compared to those studied in DMSO: H2O. The proposed sensors could also be used to determine cyanide in water with good analytical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Guidelines for Drinking-Water Quality. World Health Organization, Geneva, (1996)

  2. Ishii A, Watanabe-Suzuki H, Suzuki O, Kumazawa T (1998) Determination of cyanide in whole blood by capillary gas chromatography with cryogenic oven trapping. Anal Chem 70:4873–4876

    Article  PubMed  CAS  Google Scholar 

  3. González LaFuente JM, Fernández Martínez E, Vicente Pérez JA, Fernández Fernández S, Miranda Ordiores AJ, Sánchez Uría JE, Fernández Sánchez ML, Sanz-Medel A (2000) Differential-pulse voltammetric determination of low μgl−1 cyanide levels using EDTA, Cu(II) and a hanging mercury drop electrode. Anal Chim Acta 410:135–142

    Article  Google Scholar 

  4. Vallejo-Pecharromán B, Luque de Castro MD (2002) Determination of cyanide by a pervaporation–UV photodissociation–potentiometric detection approach. Analyst 127:267–270

    Article  Google Scholar 

  5. López Gómez AV, Martínez Calatayud J (1998) Determination of cyanide by a flow injection analysis-atomic absorption spectrometric method. Analyst 123:2103–2107

    Article  PubMed  Google Scholar 

  6. Miralles E, Prat D, Compañó R, Granados M (1997) Assessment of different fluorimetric reactions for cyanide determination in flow systems. Analyst 122:553–558

    Article  CAS  Google Scholar 

  7. Recalde-Ruiz DL, Andrés-García E, Díaz-García ME (2000) Fluorimetric flow injection and flow-through sensing systems for cyanide control in waste water. Analyst 125:2100–2105

    Article  CAS  Google Scholar 

  8. Miralles E, Compañó R, Granados M, Prat MD (2000) Determination of metal-cyanide complexes by ion-interaction chromatography with fluorimetric detection. Anal Chim Acta 403:197–204

    Article  CAS  Google Scholar 

  9. Gamoh K, Imamichi S (1991) Postcolumn liquid chromatographic method for the determination of cyanide with fluorimetric detection. Anal Chim Acta 251:255–259

    Article  CAS  Google Scholar 

  10. Miyaji H, Sessler JL (2001) Off-the-shelf colorimetric anion sensors. Angrew Chem Int Ed 40:154–157

    Article  CAS  Google Scholar 

  11. Jr Anzenbacher P, Tyson DS, Jursíková K, Castellano FN (2002) Luminescence lifetime-based sensor for cyanide and related anions. J Am Chem Soc 124:6232–6233

    Article  Google Scholar 

  12. Kim Y-H, Hong J-I (2002) Ion pair recognition by Zn–porphyrin/crown ether conjugates: visible sensing of sodium cyanide. Chem Commun 512–513

  13. Chow C-F, Lam MHW, Wong W-Y (2004) A heterobimetallic ruthenium(II)-copper(II) Donor-acceptor complex as a chemodosimetric ensemble for selective cyanide detection. Inorg Chem 43:8387–8393

    Article  PubMed  CAS  Google Scholar 

  14. Chung S-Y, Nam S-W, Lim J, Park S, Yoon J (2009) A highly selective cyanide sensing in water via fluorescence change and its application to in vivo imaging. Chem Commun 2866–2868

  15. Chung Y, Lee H, Ahn KH (2006) N-acyl triazenes as tunable and selective chemodosimeters toward cyanide Io. J Org Chem 71:9470–9474

    Article  PubMed  CAS  Google Scholar 

  16. Chen C-L, Chen Y-H, Chen C-Y, Sun S-S (2006) Dipyrrole carboxamide derived selective ratiometric probes for cyanide ion. Org Lett 8:5053–5056

    Article  PubMed  CAS  Google Scholar 

  17. Tomosulo M, Sortino S, White AJP, Raymo FM (2006) Chromogenic oxazines for cyanide detection. J Org Chem 71:744–753

    Article  Google Scholar 

  18. Lee K-S, Kim H-J, Shin I, Hong J-I (2008) Fluorescence chemodosimeter for selective detection of cyanide in water. Org Lett 10:49–51

    Article  PubMed  CAS  Google Scholar 

  19. Ekmekci Z, Yilmaz MD, Akkaya EU (2008) A monostyryl-boradiazaindacene (BODIPY) derivative as colorimetric and fluorescence probe for cyanide ions. Org Lett 10:461–464

    Article  PubMed  CAS  Google Scholar 

  20. Yang Y-K, Tae J (2006) Acridinium salt based fluorescence and colorimetric chemosensor for the detection of cyanide in water. Org Lett 8:5721–5723

    Article  PubMed  CAS  Google Scholar 

  21. Ros-Lis JV, Matinez-Manez R, Soto J (2002) A selective chromogenic reagent for cyanide determination. Chem Commun 2248–2249

  22. Hudnall TW, Gabbaï FP (2007) Ammonium boranes for the selective complexation of cyanide or fluoride ions in water. J Am Chem Soc 129:11978–11986

    Article  PubMed  CAS  Google Scholar 

  23. Sun Y, Wang G, Guo W (2009) Colorimetric detection of cyanide with N-nitrophenyl benzamide derivatives. Tetrahedron 65:3480–3485

    Article  CAS  Google Scholar 

  24. Huh JO, Do Y, Lee MH (2008) A BODIPY-Borane dyad for the selective complexation of cyanide ion. Organometallics 27:1022–1025

    Article  CAS  Google Scholar 

  25. Badugu R, Lakowicz JR, Geddes CD (2005) Anion sensing using quinolinium based boronic acid probes. Curr Anal Chem 1:157–170

    Article  CAS  Google Scholar 

  26. Badugu R, Lakowicz JR, Geddes CD (2005) Cyanide-sensitive fluorescence probes. Dyes Pigments 64:49–55

    Article  CAS  Google Scholar 

  27. Badugu R, Lakowicz JR, Geddes CD (2005) Enhanced fluorescence cyanide detection at physiologically lethal levels: reduced ICT-based signal transduction. J Am Chem Soc 127:3635–3641

    Article  PubMed  CAS  Google Scholar 

  28. Badugu R, Lakowicz JR, Geddes CD (2004) Fluorescence intensity and lifetime-based cyanide sensitive probes for physiological safeguard. Anal Chem Acta 522:9–17

    Article  CAS  Google Scholar 

  29. Jamkratoke M, Ruangpornvisuti V, Tumcharern G, Tuntulani T, Tomapatanaget B (2009) A-D-A sensors based on naphthoimidazoledione and boronic acid as Turn-On cyanide probes in water. J Org Chem 74:3919–3922

    Article  PubMed  CAS  Google Scholar 

  30. Fernandez YD, Gramateges AP, Amendola V, Foti F, Mangano C, Pallavicini P, Patroni S (2004) Using micelles for a new approach to fluorescence sensors for metal cations. Chem Commun 1650–1651

  31. Nakahara Y, Kida T, Nakatsuji Y, Akashi M (2004) A novel fluorescence indicator for Ba2+ in aqueous micellar solutions. Chem Commun 224–225

  32. Nakahara Y, Kida T, Nakatsuji Y, Akashi M (2005) Fluorometric sensing of alkali metal and alkaline earth metal cations by novel photosensitive monoazacryptand derivatives in aqueous micellar solutions. Org Biomol Chem 3:1787–1794

    Article  PubMed  CAS  Google Scholar 

  33. Vargas LV, Sand J, Brãno TAS, Fiedler HD, Quina FH (2005) Determination of environmentally important metal ions by fluorescence quenching in anionic micellar solution. Analyst 130:242–246

    Article  PubMed  CAS  Google Scholar 

  34. Mallick A, Mandal MC, Haldar B, Charabarty A, Das P, Chattopadhyay N (2006) Surfactant-induced modulation of fluorosensor activity: a simple way to maximize the sensor efficiency. J Am Chem Soc 126:3126–3127

    Article  Google Scholar 

  35. Pallavicini P, Dias-Fernandez YA, Foti F, Mangano C, Patroni S (2007) Fluorescence sensors for Hg2+ in micelles: a new approach that transforms an ON–OFF into an OFF–ON response as a function of the lipophilicity of the receptor. Chem Eur J 13:178–187

    Article  Google Scholar 

  36. Cuccovia IM, Chaimovich H (1982) Determination of micromolar concentrations of iodine with aqueous mice1lar hexadecyltrimethylammonium bromide. Anal Chem 54:789–791

    Article  CAS  Google Scholar 

  37. Kunda S, Ghosh SK, Manadal M, Pal T (2002) Micelle bound redox dye marker for nanogram level arsenic detection promoted by nanoparticles. New J Chem 26:1081–1084

    Article  Google Scholar 

  38. Hayakawa K, Kanda M, Satake I (1979) The determination of formation constant of triiodide ion in micellar solution of dodecyltrimethyammonium choloride. Bull Chem Jpn Soc 52:3171–3175

    Article  CAS  Google Scholar 

  39. Grosh SK, Kundu S, Mandal M, Pal T (2002) Silver and gold nanocluster catalyzed reduction of methylene blue by arsine in a micellar medium. Langmuir 18:8756–8760

    Article  Google Scholar 

  40. Button CA, Nome F, Quina FH, Romsted LS (1991) Ion binding and reactivity at charged aqueous interfaces. Acc Chem Res 24:357–364

    Article  Google Scholar 

  41. Mallick K, Jewraka S, Pradhan N, Pal T (2001) Micelle-catalysed redox reaction. Curr Sci 80:1408–1412

    CAS  Google Scholar 

  42. Matizinger S, Hussey DM, Fayer MD (1998) Fluorescence probes solubilization in the headgroup and core regions of micelles: fluorescence lifetime and orientational relaxation measurement. J Phy Chem B 102:7216–7224

    Article  Google Scholar 

  43. Wei L, Ming Z, Jinli Z, Yongcai H (2006) Self-assembly of cetyl trimethylammonium bromide in ethanol-water mixtures. Front Chem China 4:438–442

    Google Scholar 

  44. Cooper CR, Spencer N, James TD (1998) Selective fluorescence detection of fluoride using boronic acids. Chem Commun 1365–1366

  45. Ingle JD Jr, Wilson RL (1976) Difficulties with determining the detection limit with nonlinear calibration curves in spectrometry. Anal Chem 48:1641–1642

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.J. is a Ph.D student supported by the Royal Golden Jubilee Program (PHD/0049/2550) of the Thailand Research Fund (TRF) and Commission on Higher Education (CHE). We gratefully acknowledge the National Nanotechnology Center (NN-B-22-b15-94-49-55), the TRF and CHE (RTA5080006) and Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agriculture (PERFECTA) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boosayarat Tomapatanaget.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamkratoke, M., Tumcharern, G., Tuntulani, T. et al. A Selective Spectrofluorometric Determination of Micromolar Level of Cyanide in Water Using Naphthoquinone Imidazole Boronic-Based Sensors and a Surfactant Cationic CTAB Micellar System. J Fluoresc 21, 1179–1187 (2011). https://doi.org/10.1007/s10895-010-0796-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0796-9

Keywords

Navigation