Skip to main content
Log in

Uptake of FITC Labeled Silica Nanoparticles and Quantum Dots by Rice Seedlings: Effects on Seed Germination and Their Potential as Biolabels for Plants

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The use of fluorescent nanomaterials with good photostability and biocompatibility in live imaging of cells has gained increased attention. Even though several imaging techniques have been reported for mammalian cells, very limited literatures are available for nanomaterial based live imaging in plant system. We studied the uptake ability of two different nanomaterials, the highly photostable CdSe quantum dots and highly biocompatible FITC-labeled silica nanoparticles by rice seedlings which could provide greater opportunities for developing novel in vivo imaging techniques in plants. The effects of these nanomaterials on rice seed germination have also been studied for analyzing their phytotoxic effects on plants. We observed good germination of seeds in the presence of FITC-labeled silica nanoparticles whereas germination was arrested with quantum dots. The uptake of both the nanomaterials has been observed with rice seedlings, which calls for more research for recommending their safe use as biolabels in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lin Y-S, Tsai C-P, Huang H-Y, Kuo C-T, Hung Y, Huang D-M, Chen Y-C, Mou C-Y (2005) Well ordered mesoporous silica nanoparticles as cell markers. Chem Mater 17:4570–4573

    Article  CAS  Google Scholar 

  2. Santra S, Yang H, Dutta D, Stanley JT, Holloway PH, Tan W, Moudgil BM, Mericle RA (2004) TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem Commun 24:2810–2811

    Article  Google Scholar 

  3. Hoecke KV, De Schamphelaere KAC, der Meeren PV, Lucas S, Janssen CR (2008) Ecotoxicity of silica nanoparticles to the green algae Pesudokirchneriella subcapitata: Importance of surface area. Environ Toxicol Chem 27:1948–1957

    Article  PubMed  Google Scholar 

  4. Wei C, Zhang Y, Guo J, Han B, Yang X, Yuan J (2010) Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. J Environ Sci 22:155–160

    Article  CAS  Google Scholar 

  5. Lin B-S, Diao S-Q, Li C-H, Fang L-J, Qiao S-C, Min Y (2004) Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J For Res 15:138–140

    Article  CAS  Google Scholar 

  6. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Sakthi Kumar D (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  7. Torney F, Trewyn BG, Lin VS-Y, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotech 2:295–300

    Article  CAS  Google Scholar 

  8. Hischemoller A, Nordmann J, Ptacek P, Mummenhoff K, Haase M (2009) In-vivo imaging of the uptake of upconversion nanoparticles by plant roots. J Biomed Nanotech 5:278–284

    Article  Google Scholar 

  9. Bailey RE, Smith AM, Shuming N (2004) Quantum dots in biology and medicine. Phys E 25:1–12

    Article  CAS  Google Scholar 

  10. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sndaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  PubMed  CAS  Google Scholar 

  11. Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM (2004) Quantum dot ligands provide new insights into erb/HER receptor-mediated signal transduction. Nat Biotechnol 22:198–203

    Article  PubMed  CAS  Google Scholar 

  12. Guo G, Liu W, Liang J, He Z, Xu H, Yang X (2007) Proing the cytotoxicity of CdSe quantum dots with surface modification. Mater Lett 61:1641–1644

    Article  CAS  Google Scholar 

  13. Gagne F, Auclair J, Turcotte P, Fournier M, Gagnon C, Sauve S, Blaise C (2008) Ecotoxicity of CdTe quantum dots to freshwater mussels: impacts on immune system, oxidative stress and genotoxicity. Aquat Toxicol 86:333–340

    Article  PubMed  CAS  Google Scholar 

  14. Lin S, Bhattacharya P, Rajapakse NC, Brune DE, Ke PC (2009) Efffects of quantum dots adsorption on algal photosynthesis. J Phys Chem C 113:10962–10966

    Article  CAS  Google Scholar 

  15. Etxeberria E, Gonzalez P, Baroja-Fernandez E, Romero JP (2006) Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells. Plant Signaling Behav 1:196–200

    Article  Google Scholar 

  16. Ravindran S, Kim S, Martin R, Lord EM, Ozkan CS (2005) Quantum dots as biolabels for the localization of a small plant adhesion protein. Nanotechnology 16:1–4

    Article  CAS  Google Scholar 

  17. Muller F, Houben A, Barker PE, Xiao Y, Kas JA, Melzer M (2006) Quantum dots-a versatile tool in plant science. J Nanobiotechnol 4:5–10

    Article  Google Scholar 

  18. Eggenberger K, Frey N, Zienicke B, Siebenbrock J, Schunck T, Fischer R, Brase S, Birtalan E, Nann T, Nick P (2010) Use of nanoparticles to study and manipulate plant cells. Adv Eng Mater 12:B406–B412

    Article  Google Scholar 

  19. Hu Y, Li J, Ma L, Peng Q, Feng W, Zhang L, He S, Yang F, Huang J, Li L (2010) High efficiency transport of quantum dots into plant roots with the aid of silwet L-77. Plant Physiol Biochem 48:703–709

    Article  PubMed  CAS  Google Scholar 

  20. Boatman EM, Lisensky GC (2005) A safer, easier, faster synthesis for CdSe quantum dot nanocrystals. J Chem Educ 11:1697–1699

    Google Scholar 

  21. Xie R, Kolb U, Li J, Basche T, Mews A (2005) Synthesis and characterization of highly luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J Am Chem Soc 127:7480–7488

    Article  PubMed  CAS  Google Scholar 

  22. Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  PubMed  CAS  Google Scholar 

  23. Han Y, Jiang J, Lee SS, Ying JY (2008) Reverse microemulsion mediated synthesis of silica coated gold and silver nanoparticles. Langmuir 24:5842–5848

    Article  PubMed  CAS  Google Scholar 

  24. Zhao L, Zhao Y, Han Y (2010) Pore fabrication in various silica-based nanoparticles by controlled etching. Langmuir 26:11784–11789

    Article  PubMed  CAS  Google Scholar 

  25. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60:1650–1662

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Remya Nair and Aby C. Poulose thank the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan for the financial support given as Monbukagakusho fellowship

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sakthi Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nair, R., Poulose, A.C., Nagaoka, Y. et al. Uptake of FITC Labeled Silica Nanoparticles and Quantum Dots by Rice Seedlings: Effects on Seed Germination and Their Potential as Biolabels for Plants. J Fluoresc 21, 2057–2068 (2011). https://doi.org/10.1007/s10895-011-0904-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0904-5

Keywords

Navigation