Skip to main content
Log in

Probing the Interior of Self-Assembled Caffeine Dimer at Various Temperatures

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The self-assembly of non-toxic well-consumed small caffeine molecules into well-defined structures has important implications for future medical applications seeking to target the transport of small drugs in human body. Particularly, the solvation of the microenvironments of the self assembly ultimately dictates the interaction with the drug molecules and their therapeutic efficacy. We present femtosecond-resolved studies of the dynamics of aqueous solvation within self-assembled dimeric structure of caffeine molecules. We have placed small hydrophobic probes 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl) 4H-pyran (DCM), coumarin 500 (C500) into the caffeine dimer to enable spectroscopic examinations of the interior. While molecular modeling and NMR studies of the probes in the caffeine dimers reveal a well-defined location (stacked in between two caffeine molecules), dynamical light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, densimetric and sonometric experiments explore the structural evolution of the dimer upon complexation with the probes. We have extended our studies in various temperatures in order to explore structural evolution of the self assembled structure and consequently the dynamics of solvation in the interior of the dimer. Picoseconds/femtosecond resolved dynamics and the polarization gated spectroscopic studies unravel the hydration and energetics associated with activated viscous flow of the confined probes. Our studies indicate that the interior of the caffeine dimer is well-solvated; however, the dynamics of solvation is retarted significantly compared to that in bulk water, clearly revealing the dimers maintain some ordered water molecules. We have also explored the consequence of the retarded dynamics of solvation on the photo-induced electron transfer (ET) reaction of a model probe, 2-(p-toluidino) naphthalene-6-sulfonate (TNS) encapsulated in the dimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Selby CP, Sancar A (1990) Molecular mechanisms of DNA repair inhibition by caffeine. Proc Natl Acad Sci 87:3522–3525

    Article  PubMed  CAS  Google Scholar 

  2. Larsen RW, Jasuja R, Hetzler RK, Muraoka PT, Andrada VG, Jameson DM (1996) Spectroscopic and molecular modeling studies of caffeine complexes with DNA intercalators. Biophys J 70:443–452

    Article  PubMed  CAS  Google Scholar 

  3. Davies DB, Veselkov DA, Djimant LN, Veselkov AN (2001) Heteroassociation of caffeine and aromatic drugs and their competitive binding with a DNA oligomer. Eur Biophys J 30:354–366

    Article  PubMed  CAS  Google Scholar 

  4. McKelvey VJ, McKenna PG (1986) Enhanced synergism between caffeine and mitomycin C in the induction of cytogenetic aberrations in thymidine kinase-deficient Friend murine erythroleukaemia cells. Mutagenesis 1:173–178

    Article  PubMed  CAS  Google Scholar 

  5. Mourelatos D, Dozi-Vassiliades J, Kotsis A, Gourtsas C (1988) Enhancement of cytogenetic damage and of antineoplastic effect by caffeine in Ehrlich Ascites tumor cells treated with cyclophosphamide in vivo. Cancer Res 48:1129–1131

    PubMed  CAS  Google Scholar 

  6. Andersson HC, Kihlman BA (1987) Effects of G2 treatments with inhibitors of DNA synthesis and repair on chromosome damage induced by X-rays and chemical clastogens in root tips of Vicia faba comparison with corresponding effects in cultured human lymphocytes. Mutat Res 181:173–185

    Article  PubMed  CAS  Google Scholar 

  7. Ross WE, Zwelling LA, Kohn KW (1979) Relationship between cytotoxicity and dna strand break-age produced by adriamycin and other intercalating agents. Int J Radiat Oncol Biol Phys 5:1221–1224

    PubMed  CAS  Google Scholar 

  8. Iliakis G, Nusse M, Ganapathi R, Egner I, Yen A (1986) Differential reduction by caffeine of adriamycin induced cell killing and cell cycle delays in chinese hamster v79 cells. Int J Radiat Oncul Biol Phys 12:1987–1995

    Article  CAS  Google Scholar 

  9. Ganapathi R, Grabowski D, Schmidt H, Yen A, Iliakis G (1986) Modulation of adriamycin and N-Trifluoroacetyladriamycin-14-valerate induced effects on cell cycle traverse and cytotoxicity in P388 mouse leukemia cells by caffeine and the calmodulin inhibitor trifluoperazine. Cancer Res 46:5553–5557

    PubMed  CAS  Google Scholar 

  10. Kimura H, Aoyama T (1989) Decrease in sensitivity to ethidium bromide by caffeine, dimethylsulfoxide or 3-aminobenzamide due to reduced permeability. J Pharmacobio-Dyn 12:589–595

    Article  PubMed  CAS  Google Scholar 

  11. Traganos F, Kaminska-Eddy B, Darzynkiewicz Z (1991) Caffeine reverses the cytotoxic and cell kinetic effects of Novantrone (mitoxantrone). Cell Prolif 24:305–319

    Article  PubMed  CAS  Google Scholar 

  12. Johansson B, Halldner L, Dunwiddie TV, Masino SA, Poelchen W, Llort LG, Escorihuela RM, Teruel AF, Hallin ZW, Xu XJ, Hårdemark A, Betsholtz C, Herlenius E, Fredholm BB (2001) Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci 98:9407–9412

    Article  PubMed  CAS  Google Scholar 

  13. Vajda S, Jimenez R, Rosenthal SJ, Fidlert V, Fleming GR, Castner EW Jr (1995) Femtosecond to nanosecond solvation dynamics in pure water and inside the y-cyclodextrin cavity. J Chem Soc Faraday Trans 91:867–873

    Article  CAS  Google Scholar 

  14. Danilov VI, Shestopalova AV (1989) Hydrophobic effect in biological associates: a monte carlo simulation of caffeine molecules stacking. Int J Quantum Chem 35:103–112

    Article  CAS  Google Scholar 

  15. Falk M, Chew W, Walter JA, Kwiatkowski W, Barclay KD, Klassen GA (1998) Molecular modelling and NMR studies of the caffeine dimer. Can J Chem 76:48–56

    Article  CAS  Google Scholar 

  16. Kalugin MD, Teplukhin AV (2009) Study of caffeine–DNA interaction in aqueous solution by Parallel Monte Carlo simulation. J Struct Chem 50:841–852

    Article  CAS  Google Scholar 

  17. Wong ELS, Gooding JJ (2007) The electrochemical monitoring of the perturbation of charge transfer through DNA by Cisplatin. J Am Chem Soc 129:8950–8951

    Article  PubMed  CAS  Google Scholar 

  18. Řeha D, Kabelá M, Ryjáek F, Šponer J, Šponer JE, Elstner M, Suhai S, Hobza P (2002) Intercalators. 1. Nature of stacking interactions between intercalators (Ethidium, Daunomycin, Ellipticine, and 4’,6-Diaminide-2-phenylindole) and DNA base pairs. Ab initio quantum chemical, density functional theory, and empirical potential study. J Am Chem Soc 124:3366–3376

    Article  PubMed  Google Scholar 

  19. Maroncelli M, MacInnis J, Fleming GR (1989) Polar solvent dynamics and electron-transfer reactions. Science 243:1674–1681

    Article  PubMed  CAS  Google Scholar 

  20. Rips I, Jortner J (1987) Dynamic solvent effects on outer–sphere electron transfer. J Chem Phys 87:2090–2104

    Article  CAS  Google Scholar 

  21. Hynes JT (1986) Outer-sphere electron-transfer reactions and frequency-dependent friction. J Phys Chem 90:3701–3706

    Article  CAS  Google Scholar 

  22. Cesaro A, Russo E, Crescenzl V (1976) Thermodynamics of caffeine aqueous solutions. J Phys Chem 80:335–339

    Article  CAS  Google Scholar 

  23. Bismuto E, Sirangelo I, Adinolfi A, Gaetano Irace G (1990) Dynamic fluorescence of extrinsic fluorophores as a tool for studying protein conformational substates. Biol Metals 3:131–132

    Article  CAS  Google Scholar 

  24. Sitkowski J, Stefaniak L, Nicol L, Martin ML, Martin GJ, Webb GA (1995) Complete assignments of the 1H, 13C and 15N NMR spectra of caffeine. Spectrochim Acta A Mol Biomol Spectrosc 51:839–841

    Article  Google Scholar 

  25. Banerjee D, Verma PK, Pal SK (2009) Temperature-dependent femtosecond-resolved hydration dynamics of water in aqueous guanidinium hydrochloride solution. Photochem Photobiol Sci 8:1441–1447

    Article  PubMed  CAS  Google Scholar 

  26. Carlucci L, Gavezzotti A (2005) Molecular recognition and crystal energy landscapes: an X-ray and computational study of caffeine and other methylxanthines. Chem Eur J 11:271–279

    Article  Google Scholar 

  27. Jahagirdar DV, Arbad BR, Walvekar AA, Shankarwar AG, Lande MK (2000) Studies in partial molar volumes, partial molar compressibilities and viscosity B-coefficients of caffeine in water at four temperatures. J Mol Liq 85:361–373

    Article  CAS  Google Scholar 

  28. Maevsky AA, Sukhorukov BI (1980) IR study of base stacking interactions. Nucl Acids Res 8:3029–3042

    Article  PubMed  CAS  Google Scholar 

  29. Falk M, Gil M, Iza N (1990) Self-association of caffeine in aqueous solution: an FT-IR study. Can J Chem 68:1293–1299

    Article  CAS  Google Scholar 

  30. Millero FJ, Surdo AL, Shin C (1978) The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25.degree.C. J Phys Chem 82:784–792

    Article  CAS  Google Scholar 

  31. Benz R (1961) Some thermodynamic properties of the system PuCl3—KCl from electromotive force data. J Phys Chem 65:81–84

    Article  CAS  Google Scholar 

  32. Bockris JOM, Saluja PPS (1972) Ionic solvation numbers from compressibilities and ionic vibration potentials measurements. J Phys Chem 76:2140–2151

    Article  CAS  Google Scholar 

  33. Hirata F, Arakawa K (1972) Ultrasonic study of solute-solvent interaction in aqueous solutions of Tetraalkylammonium salts. Bull Chem Soc Jpn 45:2715–2719

    Article  CAS  Google Scholar 

  34. Pal SK, Sukul D, Mandal D, Sen S, Bhattacharyya K (2000) Solvation dynamics of DCM in micelles. Chem Phys Lett 327:91–96

    Article  CAS  Google Scholar 

  35. Sarkar R, Shaw AK, Ghosh M, Pal SK (2006) Ultrafast photoinduced deligation and ligation dynamics: DCM in micelle and micelle-enzyme complex. J Photochem Photobiol B 83:213–222

    Article  PubMed  CAS  Google Scholar 

  36. Pal SK, Mandal D, Sukul D, Bhattacharyya K (1999) Solvation dynamics of 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) in a microemulsion. Chem Phys Lett 312:178–184

    Article  CAS  Google Scholar 

  37. Meyer M, Mialocq JC (1987) Ground state and singlet excited state of laser dye DCM: Dipole moments and solvent induced spectral shift. Opt Commun 64:264–268

    Google Scholar 

  38. Meuler PVD, Zhang H, Jonkman AM, Glasbeek M (1996) Subpicosecond solvation relaxation of 4-(Dicyanomethylene)-2-methyl-6-(p-(dimethylamino)styryl)-4H-pyran in polar liquids. J Phys Chem 100:5367–5373

    Article  Google Scholar 

  39. Drake JM, Lesiecki ML, Camaioni DM (1985) Photophysics and Cis_Trans Isomerization of DCM. Chem Phys Lett 113:530–534

    Article  CAS  Google Scholar 

  40. Zhang H, Jonkman AM, Pvd M, Glasbeek M (1994) Femtosecond studies of charge separation in photo-excited DCM in liquid solution. Chem Phys Lett 224:551–556

    Article  CAS  Google Scholar 

  41. Easter DC, Baronavski AP (1993) Ultrafast relaxation in the fluorescent state of the laser dye DCM. Chem Phys Lett 201:153–158

    Article  CAS  Google Scholar 

  42. Philips LA, Webb SP, Clark JH (1985) High-pressure studies of rotational reorientation dynamics: the role of dielectric friction. J Chem Phys 83:5810–5821

    Article  CAS  Google Scholar 

  43. Kalman B, Clarke N, Johansson LBA (1989) Dynamics of a new fluorescent probe, 2,5,8,11-tetra-tert-butylperylene in solution, cubic lyotropic liquid crystals, and model membranes. J Phys Chem 93:4608–4615

    Article  CAS  Google Scholar 

  44. Zana R (1999) Microviscosity of aqueous surfactant micelles: effect of various parameters. J Phys Chem B 103:9117–9125

    Article  CAS  Google Scholar 

  45. Fee RS, Maroncelli M (1994) Estimating the time-zero spectrum in time-resolved emmsion measurements of solvation dynamics. Chem Phys 183:235–247

    Article  CAS  Google Scholar 

  46. Jimenez R, Fleming GR, Kumar PV, Maroncelli M (1994) Femtosecond solvation dynamics of water. Nature 369:471–473

    Article  CAS  Google Scholar 

  47. Riter RE, Willard DW, Levinger NE (1998) Water immobilization at surfactant interfaces in reverse micelles. J Phys Chem B 102:2705–2714

    Article  CAS  Google Scholar 

  48. Corbeil EM, Levinger NE (2003) Dynamics of polar solvation in quaternary microemulsions. Langmuir 19:7264–7270

    Article  CAS  Google Scholar 

  49. Zhong D, Pal SK, Zewail AH (2001) Femtosecond studies of protein -DNA binding and dynamics: Histone I. Chem Phys Chem 2:219–227

    Article  CAS  Google Scholar 

  50. Hirose K (2001) A practical guide for the determination of binding constants. J Incl Phenom Macrocycl Chem 39:193–209

    Article  CAS  Google Scholar 

  51. Datta A, Mandal D, Pal SK, Das S, Bhattacharyya K (1998) Interaction of triton X-100 with cyclodextrins. A fluorescence study. J Chem Soc Faraday Trans 94:3471–3475

    Article  CAS  Google Scholar 

  52. Chang TL, Cheung HC (1990) A model for molecules with twisted intramolecular charge transfer characteristics: solvent polarity effect on the nonradiative rates of dyes in a series of water—ethanol mixed solvents. Chem Phys Lett 173:343–348

    Article  CAS  Google Scholar 

  53. Bhattacharyya K, Chowdhury M (1993) Environmental and magnetic field effects on exciplex and twisted charge transfer emission. Chem Rev 93:507–535

    Article  CAS  Google Scholar 

  54. Sarkar N, Das K, Nath D, Bhattacharyya K (1992) Interaction of urea with fluorophores bound to cyclodextrins. Fluorescence of p-toluidino naphthalene sulphonate. Chem Phys Lett 196:491–496

    Article  CAS  Google Scholar 

  55. Nakamura A, Saitoh K, Toda F (1991) Fluctuation in structure of inclusion complexes of cyclodextrins with fluorescent probes. Chem Phys Lett 187:110–115

    Article  CAS  Google Scholar 

  56. Sarkar N, Das K, Nath D, Bhattacharyya K (1994) Salt effect on the hydrophobic binding of p-toluidino naphthalene sulphonate with cyclodextrins. Chem Phys Lett 218:492–498

    Article  CAS  Google Scholar 

  57. Almgren M, Grieser F, Thomas JK (1979) Dynamic and static aspects of solubilization of neutral arenes in ionic micellar solutions. J Am Chem Soc 101:279–291

    Article  CAS  Google Scholar 

  58. Jobe DJ, Verrall RE, Palepu R, Reinsborough VC (1988) Fluorescence and conductometric studies of potassium 2-(p-Toluidinyl)naphthalene-6-sulfonate/Cyclodextrin/Surfactant systems. J Phys Chem 92:3582–3586

    Article  CAS  Google Scholar 

  59. Catena GC, Bright FV (1989) Thermodynamic study on the effects of P-cyclodextrin inclusion with anilinonaphthalenesulfonates. Anal Chem 61:905–909

    Article  PubMed  CAS  Google Scholar 

  60. Sen P, Mukherjee S, Halder A, Bhattacharyya K (2004) Temperature dependence of solvation dynamics in a micelle. 4-Aminophthalimide in Triton X-100. Chem Phys Lett 385:357–361

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.B. thanks UGC and P.K.V. thanks CSIR for Research Fellowships. We thank DST for a financial grant (SR/SO/BB-15/2007). We extend our thanks to Barun Majumder for helping us to carry out the NMR experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Kumar Pal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, S., Verma, P.K., Mitra, R.K. et al. Probing the Interior of Self-Assembled Caffeine Dimer at Various Temperatures. J Fluoresc 22, 753–769 (2012). https://doi.org/10.1007/s10895-011-1011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-1011-3

Keywords

Navigation