Skip to main content
Log in

Rigid Coumarins: a Complete DFT, TD-DFT and Non Linear Optical Property Study

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The electronic structures and photophysical properties of rigid coumarin dyes have been studied by using quantum chemical methods. The ground-state geometries of these dyes were optimized using the Density Functional Theory (DFT) methods. The lowest singlet excited state was optimized using Time -Dependent Density Functional Theory [TD-B3LYP/6-31G(d)]. On the basis of ground- and excited-state geometries, the absorption and emission spectra have been calculated using the DFT and TD-DFT method. All the calculations were carried out in gas phase and in acetonitrile medium. The results show that the absorption maxima and fluorescence emission maxima calculated using the Time-Dependent Density Functional Theory is in good agreement with the available experimental results. To understand the Non- Linear Optical properties of coumarin dyes we computed dipole moment (μ), electronic polarizability (α), mean first hyperpolarizability (βo) and second hyperpolarizability (γ) using B3LYP density functional theory method in conjunction with 6-31G(d) basis set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Syzova ZA, Doroshenko AO, Lukatskaya LL et al (2004) Bichromophoric fluorescent dyes with rigid molecular structure: fluorescence ability regulation by the photoinduced intramolecular electron transfer. J Photochem Photobiol A Chem 165:59–68

    Article  CAS  Google Scholar 

  2. Turki H, Abid S, Fery-Forgues S, El Gharbi R (2007) Optical properties of new fluorescent iminocoumarins: Part 1. Dye Pigment 73:311–316

    Article  CAS  Google Scholar 

  3. Christie RM, Lui C (2000) Studies of fluorescent dyes: part 2. An investigation of the synthesis and electronic spectral properties of substituted 3-(2′-benzimidazolyl)coumarins. Dye Pigment 47:79–89

    Article  CAS  Google Scholar 

  4. Schill H, Nizamov S, Bottanelli F et al (2013) 4-Trifluoromethyl-substituted coumarins with large Stokes shifts: synthesis, bioconjugates, and their use in super-resolution fluorescence microscopy. Chemistry 19:16556–16565

    Article  CAS  PubMed  Google Scholar 

  5. Wagner BD (2009) The use of coumarins as environmentally-sensitive fluorescent probes of heterogeneous inclusion systems. Molecules 14:210–237

    Article  CAS  PubMed  Google Scholar 

  6. Bolte S, Talbot C, Boutte Y et al (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214:159–173

    Article  CAS  PubMed  Google Scholar 

  7. Yuan L, Lin W, Song J, Yang Y (2011) Development of an ICT-based ratiometric fluorescent hypochlorite probe suitable for living cell imaging. Chem Commun (Camb) 47:12691–12693

    Article  CAS  Google Scholar 

  8. Cho S, Jang J, Song C et al (2013) Simple super-resolution live-cell imaging based on diffusion-assisted Förster resonance energy transfer. Sci Rep 3:1208

    PubMed Central  PubMed  Google Scholar 

  9. Signore G, Nifosì R, Albertazzi L et al (2010) Polarity-sensitive coumarins tailored to live cell imaging. J Am Chem Soc 132:1276–1288

    Article  CAS  PubMed  Google Scholar 

  10. Peng M-J, Guo Y, Yang X-F et al (2013) A highly selective ratiometric and colorimetric chemosensor for cyanide detection. Dye Pigment 98:327–332

    Article  CAS  Google Scholar 

  11. Tsukamoto K, Shinohara Y, Iwasaki S, Maeda H (2011) A coumarin-based fluorescent probe for Hg2+ and Ag+ with an N’-acetylthioureido group as a fluorescence switch. Chem Commun (Camb) 47:5073–5075

    Article  CAS  Google Scholar 

  12. Li J, Zhang C-F, Yang S-H et al (2014) A coumarin-based fluorescent probe for selective and sensitive detection of thiophenols and its application. Anal Chem 86:3037–3042

    Article  CAS  PubMed  Google Scholar 

  13. Jones G, Jackson WR, Choi CY, Bergmark WR (1985) Solvent effects on emission yield and lifetime for coumarin laser dyes. Requirements for a rotatory decay mechanism. J Phys Chem 89:294–300

    Article  CAS  Google Scholar 

  14. Maeda M (1984) Laser Dyes. Academic, New York

    Google Scholar 

  15. Wang Z-S, Cui Y, Hara K et al (2007) A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells. Adv Mater 19:1138–1141

    Article  CAS  Google Scholar 

  16. Hara K, Sato T, Katoh R et al (2003) Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J Phys Chem B 107:597–606

    Article  CAS  Google Scholar 

  17. Zhang R, Zheng H, Shen J (1999) A new coumarin derivative used as emitting layer in organic light-emitting diodes. Synth Met 106:157–160

    Article  CAS  Google Scholar 

  18. Chen CH, Tang CW (2001) Efficient green organic light-emitting diodes with stericly hindered coumarin dopants. Appl Phys Lett 79:3711–3713

    Article  CAS  Google Scholar 

  19. Jung HS, Ko KC, Lee JH et al (2010) Rationally designed fluorescence turn-on sensors: a new design strategy based on orbital control. Inorg Chem 49:8552–8557

    Article  CAS  PubMed  Google Scholar 

  20. Liu B, Wang R, Mi W et al (2012) Novel branched coumarin dyes for dye-sensitized solar cells: significant improvement in photovoltaic performance by simple structure modification. J Mater Chem 22:15379–15387

    Article  CAS  Google Scholar 

  21. Yu T, Zhao M, Li A et al (2012) Synthesis and photoluminescent properties of 7-N, N-diphenylamino-3- benzoheterocyclic coumarin derivatives. Res Chem Intermed 39:2259–2266

    Article  Google Scholar 

  22. Jagtap AR, Satam VS, Rajule RN, Kanetkar VR (2009) The synthesis and characterization of novel coumarin dyes derived from 1,4-diethyl-1,2,3,4-tetrahydro-7-hydroxyquinoxalin-6-carboxaldehyde. Dye Pigment 82:84–89

    Article  CAS  Google Scholar 

  23. Laurent AD, Adamo C, Jacquemin D (2014) Dye chemistry with time-dependent density functional theory. Phys Chem Chem Phys 16:14334–14356

    Article  CAS  PubMed  Google Scholar 

  24. Laurent AD, Jacquemin D (2013) TD-DFT benchmarks: A review. Int J Quantum Chem 113:2019–2039

    Article  CAS  Google Scholar 

  25. Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 11:10757–10816

    Article  CAS  PubMed  Google Scholar 

  26. Furche F, Rappaport D (2005) Density functional theory for excited states: Equilibrium structure and electronic spectra. In: Olivucci M (ed) Comput Photochem. Elsevier, Amsterdam, pp 93–128

    Chapter  Google Scholar 

  27. Oprea C, Panait P, Cimpoesu F et al (2013) Density functional theory (DFT) study of coumarin-based dyes adsorbed on TiO2 nanoclusters—applications to dye-sensitized solar cells. Mater (Basel) 6:2372–2392

    Article  CAS  Google Scholar 

  28. Bai Y, Du J, Weng X (2014) Synthesis, characterization, optical properties and theoretical calculations of 6-fluoro coumarin. Spectrochim Acta A Mol Biomol Spectrosc 126:14–20

    Article  CAS  PubMed  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision C.01. Gaussian 09, Revis B01. Gaussian, Inc, Wallingford

    Google Scholar 

  30. Treutler O, Ahlrichs R (1995) Efficient molecular numerical integration schemes. J Chem Phys 102:346–354

    Article  CAS  Google Scholar 

  31. Becke AD (1993) Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 98

  32. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  33. Hehre WJ, Radom L, Schleyer PV, Pople J (1986) Ab Initio Molecular Orbital Theory. Wiley, New York

    Google Scholar 

  34. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  35. Valeur B, Berberan-Santos MN (2001) Molecular fluorescence: principles and applications. Wiley, Weinheim

    Book  Google Scholar 

  36. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094

    Article  CAS  PubMed  Google Scholar 

  37. Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  38. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  39. Hehre WJ, Ditchfield R, Pople JA (1972) Self—consistent molecular orbital methods. XII. further extensions of gaussian—type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  40. Kleinman DA (1962) Nonlinear dielectric polarization in optical media. Phys Rev 126:1977–1979

    Article  CAS  Google Scholar 

  41. Stähelin M, Burland DM, Rice JE (1992) Solvent dependence of the second order hyperpolarizability in p-nitroaniline. Chem Phys Lett 191:245–250

    Article  Google Scholar 

Download references

Acknowledgments

Sandip K. Lanke is thankful to University Grant Commission (UGC) for providing junior and senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaiyan Sekar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 616 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanke, S.K., Sekar, N. Rigid Coumarins: a Complete DFT, TD-DFT and Non Linear Optical Property Study. J Fluoresc 25, 1469–1480 (2015). https://doi.org/10.1007/s10895-015-1638-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1638-6

Keywords

Navigation