Skip to main content

Advertisement

Log in

Thioglycolic Acid-Capped CdS Quantum Dots Conjugated to α-Amylase as a Fluorescence Probe for Determination of Starch at Low Concentration

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the present research, water soluble thioglycolic acid-capped CdS quantum dots (QDs) were synthesized by chemical precipitation method. The characteristics of prepared quantum dots were determined using X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The obtained results revealed that CdS QDs have 5.60 nm crystallite size, hexagonal wurtzite structure and spherical morphology with less than 10 nm diameter. The photoluminescence (PL) spectroscopy was performed in order to study the effect of the presence of starch solutions. Blue emission peaks were positioned at 488 nm and its intensity quenched by increasing the concentration of starch solutions. The result of PL quenches in range of studied concentrations (0–100 ppm) was best described by Michaelis-Menten model. The amount of Michaelis constant (Km) for immobilized α-amylase in this system was about 68.08 ppm which showed a great tendency of enzyme to hydrolyze the starch as substrate. Finally, the limit of detection (LOD) was found to be about 2.24 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang J, Zhang F, Luo Y, Yang H (2006) A preliminary study on cactus as coagulant in water treatment. Process Biochem. 41:730–733

    Article  CAS  Google Scholar 

  2. Chen YC, Xiao J (1999) Researches and applications of natural macromolecular flocculants. Evolve Environ Sci 7:83–88

    Google Scholar 

  3. Ye A, Hemar Y, Singh H (2004) Flocculation and coalescence of droplets in oil-in-water emulsions formed with highly hydrolysed whey proteins as influenced by starch. Colloids Surf. B: Biointerfaces 38:1–9

    Article  CAS  PubMed  Google Scholar 

  4. Guo-xiu, X., Shu-fen, Z., Ben-zhi, J., Jin-zong, Y. (2005). Recent advances in modified starch as Flocculant, the proceedings of the 3rd Internation13al conference on functional molecules, China.

    Google Scholar 

  5. Van der kooji D, Hijnen WAM (1985) Determination of the concentration of maltose-and starch-like compounds in drinking water by growth measurement with a well-defined strain of a elavobacterium species. Appl. Environ. Microbiol. 49:765–771

    Google Scholar 

  6. Sene M, Thévenot C, Prioul JL (1997) Simultaneous spectrophotometric determination of amylose amylopectin in starch from maize kernel by multiwavelength analysis. J. Cereal Sci. 26:211–221

    Article  CAS  Google Scholar 

  7. Boley NP, Burn MJS (1990) The determination of starch in composite food stuffs by high performance liquid chromatography. Food Chem. 36:45–51

    Article  CAS  Google Scholar 

  8. Lim LH, Macdonald DG, Gordon A, Hill GA (2003) Hydrolysis of starch particles using immobilized barley alpha-amylase. Biochem. Eng. J. 13:53–62

    Article  CAS  Google Scholar 

  9. Hu T, Zhang X, Zhang Z (1999) Disposable screen-printed enzyme sensor for simultaneous determination of starch and glucose. Biotechnol. Tech. 13:359–362

    Article  CAS  Google Scholar 

  10. Sakac N, Sak-Bosnar M, Horvat M (2013) Direct potentiometric determination of starch using a platinum redox sensor. Food Chem. 138:9–12

    Article  CAS  PubMed  Google Scholar 

  11. McCleary BV, Solah V, Gibson TS (1994) Quantitative measurement of total starch in cereal flours and products. J. Cereal Sci. 20:51–58

    Article  CAS  Google Scholar 

  12. Mitchell GA (1990) Methods of starch analysis. Starch-Starke 42:131–134

    Article  CAS  Google Scholar 

  13. Tayebi M, Tavakkoli Yaraki M, Ahmadieh M, Tahriri M, Vashaee D, Tayebi L (2016) Determination of total aflatoxin using cysteamine-capped CdS quantum dots as a fluorescence probe. Colloid Polym Sci 1–10. doi:10.1007/s00396-016-3903-x

  14. Karimi M, Rabiee M, Moztarzadeh F, Bodaghi M, Tahriri M (2009) Ammonia-free method for synthesis of CdS nanocrystalline thin films through chemical bath deposition technique. Solid State Commun 149:1765–1768

  15. Mozafari M, Moztarzadeh F, Tahriri M (2013) Green synthesis and characterisation of spherical PbS luminescent micro- and nanoparticles via wet chemical technique. Adv Appl Ceram 110:30–34

  16. Sahai S, Husain M, Shanker V, Singh N, Haranath D (2011) Facile synthesis and step by step enhancement of blue photoluminescence from Ag-doped ZnS quantum dots. J. Colloid Interface Sci. 357:379–383

    Article  CAS  PubMed  Google Scholar 

  17. Verma RK, Kumar K, Rai SB (2013) Near infrared induced optical heating in laser ablated Bi quantum dots. J. Colloid Interface Sci. 390:11–16

    Article  CAS  PubMed  Google Scholar 

  18. Kim JJU, Kim YK, Yang H (2010) Reverse micelle-derived Cu-doped Zn1_xCdxS quantum dots and their core/shell structure. J. Colloid Interface Sci. 341:59–63

    Article  CAS  PubMed  Google Scholar 

  19. Barglik-Chory C, Buchold D, Schmitt M, Kiefer W, Heske C, Kumpf C, Fuchs O, Weinhardt L, Stahl A, Umbach E, Lentze M, Geurts J, Muuller G (2003) Synthesis, structure and spectroscopic characterization of water-soluble CdS nanoparticles. Chem. Phys. Lett. 379:443–451

    Article  CAS  Google Scholar 

  20. Spoerke ED, Voigt JA (2007) Influence of engineered peptides on the formation and properties of cadmium sulfide nanocrystals. Adv. Funct. Mater. 17:2031–2037

    Article  CAS  Google Scholar 

  21. Kim D, Miyamoto M, Mishima T, Nakayama M (2005) Strong enhancement of band-edge photoluminescence in CdS quantum dots prepared by a reverse-micelle method. J. Appl. Phys. 98:083514–083517

    Article  Google Scholar 

  22. Brichkin S, Chernykh E (2011) Hydrophilic semiconductor quantum dots. High Energy Chem 45:1–12

    Article  CAS  Google Scholar 

  23. Van der Maarel MJEC, van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the alpha-amylase family. J. Biotechnol. 94:137–155

    Article  PubMed  Google Scholar 

  24. Xiao Q, Xiao C (2008) Synthesis and photoluminescence of water-soluble Mn2 + −doped ZnS quantum dots. Appl. Surf. Sci. 254:6432–6435

    Article  CAS  Google Scholar 

  25. Hardzei M, Artemyev M (2012) Nfluence of pH on luminescence from water-soluble colloidal Mn-doped ZnSe quantum dots capped with different mercaptoacids. J. Lumin. 132:425–428

    Article  CAS  Google Scholar 

  26. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115:8706–8715

    Article  CAS  Google Scholar 

  27. Spanhel L, Anderson MA (1990) Synthesis of porous quantum-size cadmium sulfide membranes: photoluminescence phase shift and demodulation measurements. J. Am. Chem. Soc. 112:2278–2284

    Article  CAS  Google Scholar 

  28. Zhan JH, Yang XG, Wang DW, Li SD, Xie Y, Xia Y, Qian Y (2000) Polymer-controlled growth of CdS nanowires. Adv. Mater. 12:1348–1351

    Article  CAS  Google Scholar 

  29. Kuczynski J, Kerry Thomas J (1985) Photochemical behavior of cetyltrimethylammonium bromide stabilized colloidal cadmium sulfide: effect of surface charge on electron transfer across the colloid-water interface. Langmuir 1:158–161

    Article  CAS  Google Scholar 

  30. El-Tayeb O, Mohammad F, Hashem A, Aboulwafa M (2007) Optimization of the industrial production of bacterial alpha amylase in Egypt. IV Fermentor production and characterization of the enzyme of two strains of Bacillus subtilis and Bacillus amyloliquefaciens. Afr. J. Biotechnol. 7:4521–4536

    Google Scholar 

  31. Varavinit S, Chaokasem N (2002) Immobilization of a thermosTable alpha-amylase. Sci. Asia 28:247–251

    Article  CAS  Google Scholar 

  32. Dhyani H, Azahar Ali M, Pandey MK, Malhotra BD, Sen P (2012) Electrophoretically deposited CdS quantum dots based electrode for biosensor application. J. Mater. Chem. 22:4970–4976

    Article  CAS  Google Scholar 

  33. Hamilton LM, Kelly CT, Fogarty WM (1998) Raw starch degradation by the non-raw starch-adsorbing bacterial alpha amylase of bacillus sp. IMD 434. Carbohydr. Res. 314:251–257

    Article  CAS  Google Scholar 

  34. Gangadharan D, Nampoothiri KM, Sivaramakrishnan S, Pandey A (2009) Biochemical characterization of raw-starch-digesting alpha amylase purified from bacillus amyloliquefaciens. Appl. Biochem. Biotechnol. 158:653–662

    Article  CAS  PubMed  Google Scholar 

  35. Goyal N, Sindhu GS, Chakraburti ST, Gupta JK (1995) Thermostability of alpha amylase produced by bacillus sp., E2-a thermophilic mutant. J. Microb. Biotechnol. 11:593–594

    Article  CAS  Google Scholar 

  36. Ul-Haq I, Javed MM, Hameed U, Adnan F (2010) Kinetics and thermodynamic studies of alpha amylase from BACILLUS LICHENIFORMIS MUTANT. Pakistan J Biotechnol 42:3507–3516

    Google Scholar 

  37. Long GL, Winefordner JD (1983) Limit of detection a closer look at the IUPAC definition. Anal. Chem. 55:712–724

    Article  Google Scholar 

Download references

Acknowledgments

The authors hereby gratefully acknowledge Professor Farzaneh Vahabzadeh; all the laboratory facilities were provided under the aegis of her.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Tavakkoli Yaraki or Mohammadreza Tahriri.

Additional information

M. Tayebi and M. Tavakkoli Yaraki contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayebi, M., Tavakkoli Yaraki, M., Mogharei, A. et al. Thioglycolic Acid-Capped CdS Quantum Dots Conjugated to α-Amylase as a Fluorescence Probe for Determination of Starch at Low Concentration. J Fluoresc 26, 1787–1794 (2016). https://doi.org/10.1007/s10895-016-1870-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1870-8

Keywords

Navigation