Skip to main content
Log in

Recovery and Reusability of ApoUnaG Fluorescence Protein from the Unconjugated Bilirubin Complex Structure

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

This study is the first report on the separation and reusability of ApoUnaG protein, indicating excellent fluorescence response with high affinity and specificity toward unconjugated bilirubin (UC-BR) molecules, from the UnaG-UC-BR complex structure. The fluorescence properties of the UnaG-UC-BR complex (holo-UnaG) are studied by addition of different metal ions to perform possible interactions with holo-UnaG through absorbance and emission spectra. After addition of metal ions, some changes with respect to the type of metal ions are observed in fluorescence intensity of the holo-UnaG. When compared to metal ions, an excellent quenching response is sighted in the presence of Cu2+ ions by binding with UC-BR in the UnaG-UC-BR complex structure. Obtained non-fluorescence holo-UnaG-Cu2+ complex mixture is passed through Ni–NTA agarose to remove the ingredients such as Cu2+, UC-BR and Cu2+-UC-BR coordination complex from holo-UnaG. From the obtained experiments, it is concluded that Cu2+ ion can be used as an agent for the recovery of ApoUnaG protein via binding with UC-BR molecules.

Recovery and Reusability of ApoUnaG Fluorescence Protein from the Unconjugated Bilirubin Complex Structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Snapp EL (2009) Fluorescent proteins: a cell biologist's user guide. Trends Cell Biol 19(11):649–655. https://doi.org/10.1016/j.tcb.2009.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Keskinates M, Yilmaz B, Ulusu Y, Bayrakci M (2018) Electrospinning of novel calixarene-functionalized PAN and PMMA nanofibers: comparison of fluorescent protein adsorption performance. Mater Chem Phys 205:522–529. https://doi.org/10.1016/j.matchemphys.2017.11.055

    Article  CAS  Google Scholar 

  3. Adam V, Berardozzi R, Byrdin M, Bourgeois D (2014) Phototransformable fluorescent proteins: future challenges. Curr Opin Chem Biol 20:92–102. https://doi.org/10.1016/j.cbpa.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  4. Enterina JR, Wu L, Campbell RE (2015) Emerging fluorescent protein technologies. Curr Opin Chem Biol 27:10–17. https://doi.org/10.1016/j.cbpa.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  5. Kumagai A, Ando R, Miyatake H, Greimel P, Kobayashi T, Hirabayashi Y, Miyawaki A (2013) A BR-inducible fluorescent protein from eel muscle. Cell 153(7):1602–1611. https://doi.org/10.1016/j.cell.2013.05.038

    Article  CAS  PubMed  Google Scholar 

  6. Shitashima Y, Shimozawa T, Asahi T, Miyawaki A (2018) A dual-ligand-modulable fluorescent protein based on UnaG and calmodulin. Biochem Biophys Res Commun 496(3):872–879. https://doi.org/10.1016/j.bbrc.2018.01.134

    Article  CAS  PubMed  Google Scholar 

  7. Baydemir G, Andaç M, Bereli N, Say R, Denizli A (2007) Selective removal of bilirubin from human plasma with bilirubin-imprinted particles. Ind Eng Chem Res 46(9):2843–2852. https://doi.org/10.1021/ie0611249

    Article  CAS  Google Scholar 

  8. Adhikari S, Joshi R, Gopinathan C (1998) Bilirubin as an anti precipitant against copper mediated denaturation of bovine serum albumin: formation of copper–bilirubin complex. Biochim Biophys Acta Gen Subj 1380(1):109–114. https://doi.org/10.1016/S0304-4165(97)00141-4

    Article  CAS  Google Scholar 

  9. Goncharova I, Urbanová M (2009) Vibrational and electronic circular dichroism study of bile pigments: complexes of bilirubin and biliverdin with metals. Anal Biochem 392(1):28–36. https://doi.org/10.1016/j.ab.2009.05.040

    Article  CAS  PubMed  Google Scholar 

  10. Shapiro SM (2005) Definition of the clinical spectrum of kernicterus and bilirubin-induced neurologic dysfunction (BIND). J Perinatol 25(1):54. https://doi.org/10.1038/sj.jp.7211157

    Article  CAS  PubMed  Google Scholar 

  11. Viktorinova A (2017) Current insights on the role of iron and copper dyshomeostasis in the pathogenesis of bilirubin neurotoxicity. Life Sci 191:34. https://doi.org/10.1016/j.lfs.2017.10.013

    Article  CAS  PubMed  Google Scholar 

  12. Suzuki N (1966) On bilirubin-metal complex compounds in relation to black pigments of gallstones. Tohoku J Exp Med 90(2):195–205. https://doi.org/10.1620/tjem.90.195

    Article  CAS  PubMed  Google Scholar 

  13. He J, Lu XD, Zhou X, Yu NT, Chen Z (1995) Surface-enhanced Raman spectroscopy of BR-metal ion complexes. Biospectroscopy 1(2):157–162. https://doi.org/10.1002/bspy.350010210

    Article  CAS  Google Scholar 

  14. Van Norman JD, Humans MM (1974) Bilirubin-metal ion complexes. Anal Chem 46(7):926–929. https://doi.org/10.1021/ac60343a033

    Article  PubMed  Google Scholar 

  15. Watson D (1961) Analytic methods for bilirubin in blood plasma. Clin Chem 7(6):603–625

    Article  CAS  Google Scholar 

  16. Puppalwar PV, Goswami K, Dhok A (2012) Review on “evolution of methods of bilirubin estimation”. IOSR J Dent Med Sci 1(3):17–28. https://doi.org/10.9790/0853-0131728

    Article  Google Scholar 

  17. Ulusu Y, Şentürk SB, Kuduğ H, Gökçe İ (2016) Expression, purification, and characterization of bovine chymosin enzyme using an inducible pTolT system. Prep Biochem Biotechnol 46(6):596–601. https://doi.org/10.1080/10826068.2015.1085399

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yakup Ulusu or Mevlut Bayrakci.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eczacioglu, N., Yilmaz, B., Ulusu, Y. et al. Recovery and Reusability of ApoUnaG Fluorescence Protein from the Unconjugated Bilirubin Complex Structure. J Fluoresc 30, 497–503 (2020). https://doi.org/10.1007/s10895-020-02519-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02519-w

Keywords

Navigation