Skip to main content
Log in

Effects of Concentration on Aggregation of BODIPY-Based Fluorescent Dyes Solution

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Despite significant progress in understanding of dye aggregation, there are still processes that need to be further explored and which can significantly affect aggregation. In this work it was shown that the aggregation of dyes is influenced not only by dye concentration, but also by solvent polarity. It was found that nature, positions and number of fluorescent peaks may be controlled by simultaneous varying of both water fraction and dye concentration. This effect is most pronounced for molecular rotors, which aggregates’ geometry may be stabilized in different separate states depending on the aggregation degree. The concentration effect plays a significant role in dye aggregation and should be considered in new studies in order to prevent misinterpretation or to obtain new results in fields of molecular sensing or fine-tuning of fluorescence color. In this paper aggregation caused spectral changes are discussed in line with the dye structure preorganization as the strategy for the fine tuning of practically valuable spectral characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932. https://doi.org/10.1021/cr078381n

    Article  CAS  Google Scholar 

  2. Rezende LCDDL, Emery S, Emery F (2013) A review of the synthetic strategies for the development of BODIPY dyes for conjugation with proteins. Orbital Elec J Chem 5:62–83. https://doi.org/10.17807/orbital.v5i1.482

    Article  Google Scholar 

  3. Solomonov AV, Marfin YS, Rumyantsev EV (2019) Design and applications of dipyrrin-based fluorescent dyes and related organic luminophores: from individual compounds to supramolecular self-assembled systems. Dyes Pigments 162:517–542. https://doi.org/10.1016/j.dyepig.2018.10.042

    Article  CAS  Google Scholar 

  4. Ulrich G, Ziessel R, Harriman A (2008) The chemistry of fluorescent bodipy dyes: versatility unsurpassed. Angew Chem Int Ed 47:1184–1201. https://doi.org/10.1002/anie.200702070

    Article  CAS  Google Scholar 

  5. Marfin YS, Shipalova MV, Kurzin VO, Ksenofontova KV, Solomonov AV, Rumyantsev EV (2016) Fluorescent properties of BODIPY sensors based on Photoinduced Electron transfer. J Fluoresc 26:2105–2112. https://doi.org/10.1007/s10895-016-1905-1

    Article  CAS  Google Scholar 

  6. Marfin YS, Merkushev DA, Usoltsev SD, Shipalova MV, Rumyantsev EV (2015) Fluorescent properties of 8-substituted BODIPY dyes: influence of solvent effects. J Fluoresc 25:1517–1526. https://doi.org/10.1007/s10895-015-1643-9

    Article  CAS  Google Scholar 

  7. Marfin YS, Merkushev DA, Levshanov GA, Rumyantsev EV (2014) Fluorescent properties of 8-phenylbodipy in ethanol - ethylene glycol mixed solutions. J Fluoresc 24:1613–1619. https://doi.org/10.1007/s10895-014-1447-3

    Article  CAS  Google Scholar 

  8. Goze C, Ulrich G, Charbonnière L, Cesario M, Prangé T, Ziessel R (2003) Cation sensors based on terpyridine-functionalized boradiazaindacene. Chem - A Eur J 9:3748–3755. https://doi.org/10.1002/chem.200305084

    Article  CAS  Google Scholar 

  9. Merkushev DA, Usoltsev SD, Marfin YS, Pushkarev AP, Volyniuk D, Grazulevicius JV, Rumyantsev EV (2017) BODIPY associates in organic matrices: spectral properties, photostability and evaluation as OLED emitters. Mater Chem Phys 187:104–111. https://doi.org/10.1016/j.matchemphys.2016.11.053

    Article  CAS  Google Scholar 

  10. Mueller T, Gresser R, Leo K, Riede M (2012) Organic solar cells based on a novel infrared absorbing aza-bodipy dye. Sol Energy Mater Sol Cells 99:176–181. https://doi.org/10.1016/j.solmat.2011.11.006

    Article  CAS  Google Scholar 

  11. Marfin YS, Usoltsev SD, Kazak AV, Smirnova AI, Rumyantsev EV, Molchanov EE, Kuznetsov VV, Chumakov AS, Glukhovskoy EG (2017) Synthesis and spectral properties of preorganized BODIPYs in solutions and Langmuir-Schaefer films. Appl Surf Sci 424:228–238. https://doi.org/10.1016/J.APSUSC.2017.04.014

  12. Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361–5388. https://doi.org/10.1039/c1cs15113d

    Article  CAS  Google Scholar 

  13. Sharnoff M (1971) Photophysics of aromatic molecules. J Lumin 4:69–71. https://doi.org/10.1016/0022-2313(71)90011-1

    Article  Google Scholar 

  14. Wang J, Zhao Y, Dou C, Sun H, Xu P, Ye K, Zhang J, Jiang S, Li F, Wang Y (2007) Alkyl and dendron substituted quinacridones: synthesis, structures, and luminescent properties. J Phys Chem B 111:5082–5089. https://doi.org/10.1021/jp068646m

    Article  CAS  Google Scholar 

  15. Hecht S, Fréchet JMJ (2001) Dendritic encapsulation of function: applying nature’s site isolation principle from biomimetics to materials science. Angew Chem Int Ed 40:74–91. https://doi.org/10.1002/1521-3773(20010105)40:1<74::AID-ANIE74>3.0.CO;2-C

    Article  CAS  Google Scholar 

  16. Luo J, Xie Z, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 18:1740–1741. https://doi.org/10.1039/b105159h

    Article  Google Scholar 

  17. Hong Y, Lam JWY, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun:4332–4353. https://doi.org/10.1039/b904665h

  18. Tang BZ, Zhan X, Yu G, Sze Lee PP, Liu Y, Zhu D (2001) Efficient blue emission from siloles. J Mater Chem 11:2974–2978. https://doi.org/10.1039/b102221k

    Article  CAS  Google Scholar 

  19. Jing H, Lu L, Feng Y, Zheng JF, Deng L, Chen EQ, Ren XK (2016) Synthesis, aggregation-induced emission, and liquid crystalline structure of tetraphenylethylene-surfactant complex via ionic self-assembly. J Phys Chem C 120:27577–27586. https://doi.org/10.1021/acs.jpcc.6b09901

    Article  CAS  Google Scholar 

  20. Eisfeld A, Briggs JS (2006) The J- and H-bands of organic dye aggregates. Chem Phys 324:376–384. https://doi.org/10.1016/j.chemphys.2005.11.015

    Article  CAS  Google Scholar 

  21. Bonardi L, Kanaan H, Camerel F, Jolinat P, Retailleau P, Ziessel R (2008) Fine-tuning of yellow or red photo- and electroluminescence of functional difluoro-boradiazaindacene films. Adv Funct Mater 18:401–413. https://doi.org/10.1002/adfm.200700697

    Article  CAS  Google Scholar 

  22. Mikhalyov I, Gretskaya N, Bergström F, Johansson LB (2002) Electronic ground and excited state properties of dipyrrometheneboron difluoride (BODIPY): dimers with application to biosciences. Phys Chem Chem Phys 4:5663–5670. https://doi.org/10.1039/b206357n

    Article  CAS  Google Scholar 

  23. Tokoro Y, Nagai A, Chujo Y (2010) Nanoparticles via H-aggregation of amphiphilic BODIPY dyes. Tetrahedron Lett 51:3451–3454. https://doi.org/10.1016/j.tetlet.2010.04.120

    Article  CAS  Google Scholar 

  24. Choi S, Bouffard J, Kim Y (2014) Aggregation-induced emission enhancement of a meso-trifluoromethyl BODIPY via J-aggregation. Chem Sci 5:751–755. https://doi.org/10.1039/c3sc52495g

    Article  CAS  Google Scholar 

  25. Yang Y, Guo Q, Chen H, Zhou Z, Guo Z, Shen Z (2013) Thienopyrrole-expanded BODIPY as a potential NIR photosensitizer for photodynamic therapy. Chem Commun 49:3940–3942. https://doi.org/10.1039/c3cc40746b

    Article  CAS  Google Scholar 

  26. Hu R, Lager E, Aguilar-Aguilar A, Liu J, Lam JWY, Sung HHY, Williams ID, Zhong Y, Wong KS, Peña-Cabrera E, Tang BZ (2009) Twisted intramolecular charge transfer and aggregation-induced emission of BODIPY derivatives. J Phys Chem C 113:15845–15853. https://doi.org/10.1021/jp902962h

    Article  CAS  Google Scholar 

  27. Manzano H, Esnal I, Marqués-Matesanz T, Bañuelos J, López-Arbeloa I, Ortiz MJ, Cerdán L, Costela A, García-Moreno I, Chiara JL (2016) Unprecedented J-aggregated dyes in pure organic solvents. Adv Funct Mater 26:2756–2769. https://doi.org/10.1002/adfm.201505051

    Article  CAS  Google Scholar 

  28. Mukherjee S, Thilagar P (2014) Fine-tuning dual emission and aggregation-induced emission switching in NPI-BODIPY dyads. Chem - A Eur J 20:9052–9062. https://doi.org/10.1002/chem.201305049

    Article  CAS  Google Scholar 

  29. Baglan M, Ozturk S, Gür B, Meral K, Bozkaya U, Bozdemir OA, Atilgan S (2013) Novel phenomena for aggregation induced emission enhancement: highly fluorescent hydrophobic TPE-BODIPY couples in both organic and aqueous media. RSC Adv 3:15866–15874. https://doi.org/10.1039/c3ra40791h

    Article  CAS  Google Scholar 

  30. Tian D, Qi F, Ma H, Wang X, Pan Y, Chen R, Shen Z, Liu Z, Huang L, Huang W (2018) Domino-like multi-emissions across red and near infrared from solid-state 2−/2,6-aryl substituted BODIPY dyes. Nat Commun 9:1–9. https://doi.org/10.1038/s41467-018-05040-8

    Article  CAS  Google Scholar 

  31. Wan Y, Li J, Peng X, Huang C, Qi Q, Lai WY, Huang W (2017) Intramolecular charge transfer induced emission from triphenylamine-o-carborane dyads. RSC Adv 7:35543–35548. https://doi.org/10.1039/c7ra06237k

    Article  CAS  Google Scholar 

  32. Marfin YS, Vodyanova OS, Merkushev DA, Usoltsev SD, Kurzin VO, Rumyantsev EV (2016) Effect of π-extended substituents on Photophysical properties of BODIPY dyes in solutions. J Fluoresc 26:1975–1985. https://doi.org/10.1007/s10895-016-1891-3

    Article  CAS  Google Scholar 

  33. Betancourt-Mendiola L, Valois-Escamilla I, Arbeloa T, Bañuelos J, López Arbeloa I, Flores-Rizo JO, Hu R, Lager E, Gómez-Durán CFA, Belmonte-Vázquez JL, Martínez-González MR, Arroyo IJ, Osorio-Martínez CA, Alvarado-Martínez E, Urías-Benavides A, Gutiérrez-Ramos BD, Tang BZ, Peña-Cabrera E (2015) Scope and limitations of the liebeskind-srogl cross-coupling reactions involving the biellmann BODIPY. J Organomet Chem 80:5771–5782. https://doi.org/10.1021/acs.joc.5b00731

    Article  CAS  Google Scholar 

  34. Li Q, Qian Y (2016) Aggregation-induced emission enhancement and cell imaging of a novel (carbazol-: N -yl)triphenylamine-BODIPY. New J Chem 40:7095–7101. https://doi.org/10.1039/c6nj01495j

    Article  CAS  Google Scholar 

  35. JA Riddick, WB Bunger, TK Sakano (1986). Organic solvents: physical properties and methods of purification. Fourth edition

  36. Kiyohara O, D’Arcy PJ, Benson GC (1978) Thermal expansivities of water + tetrahydrofuran mixtures at 298.15 K. Can J Chem 56:2803–2807. https://doi.org/10.1139/v78-463

    Article  CAS  Google Scholar 

  37. M Margreth, R Schlink, A Steinbach, M Margreth, R Schlink, A Steinbach (2010). Water Determination By Karl Fischer Titration, In: Pharm. Sci. Encycl., Wiley. Hoboken, NJ, USA. https://doi.org/10.1002/9780470571224.pse415

  38. Kubista M, Sjöback R, Eriksson S, Albinsson B (1994) Experimental correction for the inner-filter effect in fluorescence spectra. Analyst. 119:417–419. https://doi.org/10.1039/AN9941900417

    Article  CAS  Google Scholar 

  39. Ravindran E, Varathan E, Subramanian V, Somanathan N (2016) Self-assembly of a white-light emitting polymer with aggregation induced emission enhancement using simplified derivatives of tetraphenylethylene. J Mater Chem C 4:8027–8040. https://doi.org/10.1039/c6tc02566h

    Article  CAS  Google Scholar 

  40. Struganova IA, Hazell M, Gaitor J, McNally-Carr D, Zivanovic S (2003) Influence of inorganic salts and bases on the J-band in the absorption spectra of water solutions of 1,1′-Diethyl-2,2′-cyanine iodide. J Phys Chem A 107:2650–2656. https://doi.org/10.1021/jp0223004

    Article  CAS  Google Scholar 

  41. On C, Tanyi EK, Harrison E, Noginov MA (2017) Effect of molecular concentration on spectroscopic properties of poly(methyl methacrylate) thin films doped with rhodamine 6G dye. Opt Mater Express 7:4286. https://doi.org/10.1364/ome.7.004286

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the grant of the President of the Russian Federation for state support of scientific research of young Russian scientists MK-1098.2019.3.

Author information

Authors and Affiliations

Authors

Contributions

Yuriy S. Marfin: Conceptualization, Methodology, Writing - Original Draft, Writing - Review & Editing, Supervision, Project Administration, Funding Acquisition. Elizaveta A. Banakova: Conceptualization, Methodology, Validation, Investigation, Writing - Original Draft, Writing - Review & Editing, Visualization, Funding Acquisition. Dmitry A. Merkushev: Conceptualization, Methodology, Software, Investigation, Writing - Original Draft, Writing - Review & Editing, Visualization, Funding Acquisition. Sergey D. Usoltsev: Investigation. Andrei V. Churakov: Investigation.

Corresponding author

Correspondence to Yuriy S. Marfin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The simultaneous influence of dye concentration and solvent polarity on aggregation processes has been revealed.

• The way to change and control dye spectral characteristics by aggregation has been studied.

• The analysis of spectral and aggregation properties was carried out in THF-Water mixtures with different water fractions and dye concentrations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marfin, Y.S., Banakova, E.A., Merkushev, D.A. et al. Effects of Concentration on Aggregation of BODIPY-Based Fluorescent Dyes Solution. J Fluoresc 30, 1611–1621 (2020). https://doi.org/10.1007/s10895-020-02622-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02622-y

Keywords

Navigation