Skip to main content

Advertisement

Log in

Synthesis of Fluorescent Nitrogen and Phosphorous Co-doped Carbon Quantum Dots for Sensing of Iron, Cell Imaging and Antioxidant Activities

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Carbon quantum dots (CQD) as the result of their exceptional physical and chemical properties show tremendous potential in various field of applications like cell imaging and doping of CQDs with elements like nitrogen and phosphorous increase its fluorescence property. Herein, we have synthesized fluorescent nitrogen and phosphorous codoped carbon quantum dots (NPCQDs) via a one-pot hydrothermal method. Sesame oil, L-Aspartic acid, and phosphoric acid were used as carbon, nitrogen, and phosphorous sources, respectively. UV-Vis spectrophotometer, fluorescence spectrometer, Fourier transform infrared spectrometer (FTIR), X-ray diffraction spectrometer (XRD), field emission scanning microscopy (FESEM), and transmission electron microscopy (TEM) were employed to characterize the synthesized fluorescent NPCQDs. The as-synthesized NPCQDs with a particle size of 4.7 nm possess excellent water solubility, high fluorescence with high quantum yield (46%), high ionic stability, and resistance to photobleaching. MTT assay indicated the biocompatibility of NPCQDs and it was used for multicolor live-cell imaging. Besides, the NPCQDs show an effective probe of iron ions (Fe3+) in an aqueous solution with a high degree of sensitivity and selectivity. The DPPH assay showed its good antioxidant activity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Crichton R, Crichton RR, Boelaert JR (2001) Inorganic Biochemistry of Iron Metabolism: From Molecular Mechanisms to Clinical Consequences. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  2. Theil EC (2013) Iron, Biological Properties, Introduction to Iron Entries. Encyclopedia of Metalloproteins 1032–1032

  3. De Visser SP, Kumar D (2011) Iron-Containing Enzymes: Versatile Catalysts of Hydroxylation Reactions in Nature. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  4. Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2:406–414

    Article  CAS  PubMed  Google Scholar 

  5. van Swelm RPL, Wetzels JFM, Swinkels DW (2020) The multifaceted role of iron in renal health and disease. Nat Rev Nephrol 16:77–98

    Article  PubMed  Google Scholar 

  6. Zhang D-L, Ghosh MC, Rouault TA (2014) The physiological functions of iron regulatory proteins in iron homeostasis - an update. Front Pharmacol 5

  7. Stoffel NU, Uyoga MA, Mutuku FM et al (2020) Iron Deficiency Anemia at Time of Vaccination Predicts Decreased Vaccine Response and Iron Supplementation at Time of Vaccination Increases Humoral Vaccine Response: A Birth Cohort Study and a Randomized Trial Follow-Up Study in Kenyan Infants. Front Immunol 11:1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rivella S, Crielaard BJ (2014) Disorders of Iron Metabolism: Iron Deficiency and Iron Overload and Anemia of Chronic Diseases. Pathobiology Hum Dis:1471–1487

  9. Moy RJD (2009) Nutritional Iron Deficiency in Early Childhood. Iron Deficiency and Overload 313–326

  10. Lewis C-A, de Jersey S, Seymour M et al (2020) Iron, Vitamin B, Folate and Copper Deficiency After Bariatric Surgery and the Impact on Anaemia: a Systematic Review. Obes Surg. https://doi.org/10.1007/s11695-020-04872-y

  11. Puntis J (2018) Iron deficiency. Oxford Medicine Online

  12. Beattie RM, Mark Beattie R, Dhawan A, Puntis JWL (2011) Iron deficiency. Oxford Medicine Online

  13. Sun X, He J, Yang S et al (2017) Green synthesis of carbon dots originated from Lycii Fructus for effective fluorescent sensing of ferric ion and multicolor cell imaging. J Photochem Photobiol B 175:219–225

    Article  CAS  PubMed  Google Scholar 

  14. Wang F, Hao Q, Zhang Y et al (2016) Fluorescence quenchometric method for determination of ferric ion using boron-doped carbon dots. Microchim Acta 183:273–279

    Article  Google Scholar 

  15. Hu Y, Gao Z (2019) Highly Photoluminescent Carbon Dots Derived from Discarded Chewing Gum: toward Multiple Sensing of pH, Ferric Ion, and Adenosine Triphosphate. ChemistrySelect 4:12807–12814

    Article  CAS  Google Scholar 

  16. Vashisht D, Sharma E, Kaur M et al (2020) Solvothermal assisted phosphate functionalized graphitic carbon nitride quantum dots for optical sensing of Fe ions and its thermodynamic aspects. Spectrochim Acta A Mol Biomol Spectrosc 228:117773

    Article  CAS  PubMed  Google Scholar 

  17. Sun Y-P, Zhou B, Lin Y et al (2006) Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J Am Chem Soc 128:7756–7757

    Article  CAS  PubMed  Google Scholar 

  18. Liang G, Shi H, Qi Y et al (2020) Specific Anti-biofilm Activity of Carbon Quantum Dots by Destroying. Biofilm Related Genes. Int J Nanomedicine 15:5473–5489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu X, Ray R, Gu Y et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

    Article  CAS  PubMed  Google Scholar 

  20. Balding TR (2018) Carbon Quantum Dots for Bioimaging and Photocatalytic Improvement

  21. Zhang Q, Liang J, Zhao L et al (2020) Synthesis of Novel Fluorescent Carbon Quantum Dots From for Rapid and Highly Selective Detection of o-nitrophenol and Cellular Imaging. Front Chem 8:665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kou X, Jiang S, Park S-J, Meng L-Y (2020) A review: recent advances in preparations and applications of heteroatom-doped carbon quantum dots. Dalton Trans 49:6915–6938

    Article  CAS  PubMed  Google Scholar 

  23. Molaei MJ (2019) A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta 196:456–478

    Article  CAS  PubMed  Google Scholar 

  24. Jelinek R (2016) Carbon Quantum Dots: Synthesis, Properties and Applications. Springer, Switzerland

    Google Scholar 

  25. Dong L, Zhang W, Li X, Geng X (2019) Preparation of CQDs with hydroxyl function for Fe3 detection. Micro & Nano Lett 14:440–444

    Article  Google Scholar 

  26. Jelinek R (2017) Characterization and Physical Properties of Carbon-Dots. Carbon Nanostruc:29–46

  27. Chousidis I, Stalikas CD, Leonardos ID (2020) Induced toxicity in early-life stage zebrafish (Danio rerio) and its behavioral analysis after exposure to non-doped, nitrogen-doped and nitrogen, sulfur-co doped carbon quantum dots. Environ Toxicol Pharmacol 79:103426

    Article  CAS  PubMed  Google Scholar 

  28. Hu Y, Guan R, Shao X et al (2020) Synthesis of Carbon Dots by Varying Doped Elements and Application in Serine Detection. J Fluoresc. https://doi.org/10.1007/s10895-020-02592-1

  29. Gao R, Wu Z, Wang L et al (2020) Green Preparation of Fluorescent Nitrogen-Doped Carbon Quantum Dots for Sensitive Detection of Oxytetracycline in Environmental Samples. Nanomaterials (Basel) 10. https://doi.org/10.3390/nano10081561

  30. Shi L, Zhou G, Xiang X et al (2020) Nitrogen-sulfur co-doped pH-insensitive fluorescent carbon dots for high sensitive and selective hypochlorite detection. Spectrochim Acta A Mol Biomol Spectrosc 242:118721

    Article  CAS  PubMed  Google Scholar 

  31. Omer KM, Tofiq DI, Hassan AQ (2018) Solvothermal synthesis of phosphorus and nitrogen doped carbon quantum dots as a fluorescent probe for iron(III). Microchim Acta 185:466

    Article  Google Scholar 

  32. Wang Y, Hu X, Li W et al (2020) Preparation of boron nitrogen co-doped carbon quantum dots for rapid detection of Cr(VI). Spectrochim Acta A Mol Biomol Spectrosc 243:118807

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Zhuang Q, Ni Y (2015) Facile Microwave-Assisted Solid-Phase Synthesis of Highly Fluorescent Nitrogen-Sulfur-Codoped Carbon Quantum Dots for Cellular Imaging Applications. Chem Eur J 21:13004–13011

    Article  CAS  PubMed  Google Scholar 

  34. Liang Q, Ma W, Shi Y et al (2013) Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon 60:421–428

    Article  CAS  Google Scholar 

  35. Hu X, An X, Li L (2016) Easy synthesis of highly fluorescent carbon dots from albumin and their photoluminescent mechanism and biological imaging applications. Mater Sci Eng C 58:730–736

    Article  CAS  Google Scholar 

  36. Sahu S, Behera B, Maiti TK, Mohapatra S (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun 48:8835–8837

    Article  CAS  Google Scholar 

  37. Mehta VN, Jha S, Kailasa SK (2014) One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mater Sci Eng C Mater Biol Appl 38:20–27

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Z, Hao J, Zhang J et al (2012) Protein as the source for synthesizing fluorescent carbon dots by a one-pot hydrothermal route. RSC Adv 2:8599

    Article  CAS  Google Scholar 

  39. Tang Q, Zhu W, He B, Yang P (2017) Rapid Conversion from Carbohydrates to Large-Scale Carbon Quantum Dots for All-Weather Solar Cells. ACS Nano 11:1540–1547

    Article  CAS  PubMed  Google Scholar 

  40. Magde D, Rojas GE, Seybold PG (1999) Solvent Dependence of the Fluorescence Lifetimes of Xanthene Dyes. Photochem Photobiol 70:737–744

    Article  CAS  Google Scholar 

  41. Tadesse A, Hagos M, RamaDevi D et al (2020) Fluorescent-Nitrogen-Doped Carbon Quantum Dots Derived from Citrus Lemon Juice: Green Synthesis, Mercury (II) Ion Sensing, and Live Cell Imaging. ACS Omega 5:3889–3898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pan L, Sun S, Zhang A et al (2015) Truly Fluorescent Excitation-Dependent Carbon Dots and Their Applications in Multicolor Cellular Imaging and Multidimensional Sensing. Adv Mater 27:7782–7787

    Article  CAS  PubMed  Google Scholar 

  43. Pyrzynska K, Pękal A (2013) Application of free radical diphenylpicrylhydrazyl (DPPH) to estimate the antioxidant capacity of food samples. Anal Methods 5:4288

    Article  CAS  Google Scholar 

  44. Sachdev A, Gopinath P (2015) Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst 140:4260–4269

    Article  CAS  PubMed  Google Scholar 

  45. Shi B, Su Y, Zhang L et al (2016) Nitrogen and Phosphorus Co-Doped Carbon Nanodots as a Novel Fluorescent Probe for Highly Sensitive Detection of Fe(3+) in Human Serum and Living Cells. ACS Appl Mater Interfaces 8:10717–10725

    Article  CAS  PubMed  Google Scholar 

  46. Chandra S, Laha D, Pramanik A et al (2016) Synthesis of highly fluorescent nitrogen and phosphorus doped carbon dots for the detection of Fe(3+) ions in cancer cells. Luminescence 31:81–87

    Article  CAS  PubMed  Google Scholar 

  47. Atchudan R, Jebakumar TN, Aseer KR et al (2018) Highly fluorescent nitrogen-doped carbon dots derived from Phyllanthus acidus utilized as a fluorescent probe for label-free selective detection of Fe3 ions, live cell imaging and fluorescent ink. Biosens Bioelectron 99:303–311

    Article  CAS  PubMed  Google Scholar 

  48. Ramezani Z, Qorbanpour M, Rahbar N (2018) Green synthesis of carbon quantum dots using quince fruit (Cydonia oblonga) powder as carbon precursor: Application in cell imaging and As3+ determination. Colloids Surf A Physicochem Eng Asp 549:58–66

    Article  CAS  Google Scholar 

  49. Fernando KAS, Sahu S, Liu Y et al (2015) Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl Mater Interfaces 7:8363–8376

    Article  CAS  PubMed  Google Scholar 

  50. Molaei MJ (2020) The optical properties and solar energy conversion applications of carbon quantum dots: A review. Sol Energy 196:549–566

    Article  CAS  Google Scholar 

  51. Gu D, Shang S, Yu Q, Shen J (2016) Green synthesis of nitrogen-doped carbon dots from lotus root for Hg (II) ions detection and cell imaging. Appl Surf Sci 390:38–42

    Article  CAS  Google Scholar 

  52. Liu Y, Liu Y, Park M et al (2017) Green synthesis of fluorescent carbon dots from carrot juice for in vitro cellular imaging. Carbon Lett 21:61–67

    Article  CAS  Google Scholar 

  53. Carvalho J, Santos LR, Germino JC et al (2019) Hydrothermal Synthesis to Water-stable Luminescent Carbon Dots from Acerola Fruit for Photoluminescent Composites Preparation and its Application as Sensors. Mater Res 22

  54. Zhu S, Meng Q, Wang L et al (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed Eng 52:3953–3957

    Article  CAS  Google Scholar 

  55. Dong Y, Pang H, Yang HB et al (2013) Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed Eng 52:7800–7804

    Article  CAS  Google Scholar 

  56. Hao A, Guo X, Wu Q et al (2016) Exploring the interactions between polyethyleneimine modified fluorescent carbon dots and bovine serum albumin by spectroscopic methods. J Lumin 170:90–96

    Article  CAS  Google Scholar 

  57. Singh R, Yadav A, Shekhar S et al (2019) Nitrogen Doped Carbon Quantum Dots Modified by Lens culinaris β-Galactosidase as a Fluorescent Probe for Detection of Lactose. J Fluoresc 29:1213–1219

    Article  CAS  PubMed  Google Scholar 

  58. Trivedi MK, Trivedi ABD (2015) Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment. J Chromatogr Sep Tech 06

  59. Rahmani Z, Ghaemy M (2019) One-step hydrothermal-assisted synthesis of highly fluorescent N-doped carbon dots from gum tragacanth: Luminescent stability and sensitive probe for Au3 ions. Opt Mater 97:109356

    Article  CAS  Google Scholar 

  60. Zhang Z, Sun W, Wu P (2015) Highly Photoluminescent Carbon Dots Derived from Egg White: Facile and Green Synthesis, Photoluminescence Properties, and Multiple Applications. ACS Sustain Chem Eng 3:1412–1418

    Article  CAS  Google Scholar 

  61. Yan Z, Shu J, Yu Y et al (2015) Preparation of carbon quantum dots based on starch and their spectral properties. Luminescence 30:388–392

    Article  CAS  PubMed  Google Scholar 

  62. Omer KM (2018) Highly passivated phosphorous and nitrogen co-doped carbon quantum dots and fluorometric assay for detection of copper ions. Anal Bioanal Chem 410:6331–6336

    Article  CAS  PubMed  Google Scholar 

  63. Huang Y, Zhang Y, Yan Z, Liao S (2015) Assay of ceftazidime and cefepime based on fluorescence quenching of carbon quantum dots. Luminescence 30:1133–1138

    Article  CAS  PubMed  Google Scholar 

  64. Shen T-Y, Jia P-Y, Chen D-S, Wang L-N (2021) Hydrothermal synthesis of N-doped carbon quantum dots and their application in ion-detection and cell-imaging. Spectrochim Acta A Mol Biomol Spectrosc 248:119282

    Article  CAS  PubMed  Google Scholar 

  65. (2017) Fluorescence switching sensor for sensitive detection of sinapine using carbon quantum dots. Sensors Actuators B Chem 241:482–488

  66. Dhenadhayalan N, Lin K-C (2015) Chemically induced fluorescence switching of carbon-dots and its multiple logic gate implementation. Sci Rep 5:10012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Das B, Dadhich P, Pal P et al (2014) Carbon nanodots from date molasses: new nanolights for the in vitro scavenging of reactive oxygen species. J Mater Chem B Mater Biol Med 2:6839–6847

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors would like to thanks Adama Science and Technology University as well as Andhra University for allowing us to use laboratory facilities in the Universities.

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute equally to this work.

Corresponding author

Correspondence to Aschalew Tadesse.

Ethics declarations

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tadesse, A., Belachew, N., Hagos, M. et al. Synthesis of Fluorescent Nitrogen and Phosphorous Co-doped Carbon Quantum Dots for Sensing of Iron, Cell Imaging and Antioxidant Activities. J Fluoresc 31, 763–774 (2021). https://doi.org/10.1007/s10895-021-02696-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02696-2

Keywords

Navigation