Skip to main content
Log in

Second order cone constrained convex relaxations for nonconvex quadratically constrained quadratic programming

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we present new convex relaxations for nonconvex quadratically constrained quadratic programming (QCQP) problems. While recent research has focused on strengthening convex relaxations of QCQP using the reformulation-linearization technique (RLT), the state-of-the-art methods lose their effectiveness when dealing with (multiple) nonconvex quadratic constraints in QCQP, except for direct lifting and linearization. In this research, we decompose and relax each nonconvex constraint to two second order cone (SOC) constraints and then linearize the products of the SOC constraints and linear constraints to construct some new effective valid constraints. Moreover, we extend the reach of the RLT-like techniques for almost all different types of constraint-pairs (including valid inequalities by linearizing the product of a pair of SOC constraints, and the Hadamard product or the Kronecker product of two respective valid linear matrix inequalities), examine dominance relationships among different valid inequalities, and explore almost all possibilities of gaining benefits from generating valid constraints. We also successfully demonstrate that applying RLT-like techniques to additional redundant linear constraints could reduce the relaxation gap significantly. We demonstrate the efficiency of our results with numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anstreicher, K.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43(2–3), 471–484 (2009)

    Article  MathSciNet  Google Scholar 

  2. Anstreicher, K.: On convex relaxations for quadratically constrained quadratic programming. Math. Program. 136(2), 233–251 (2012)

    Article  MathSciNet  Google Scholar 

  3. Anstreicher, K.: Kronecker product constraints with an application to the two-trust-region subproblem. SIAM J. Optim. 27(1), 368–378 (2017)

    Article  MathSciNet  Google Scholar 

  4. Anstreicher, K., Chen, X., Wolkowicz, H., Yuan, Y.X.: Strong duality for a trust-region type relaxation of the quadratic assignment problem. Linear Algebra Appl. 301(1–3), 121–136 (1999)

    Article  MathSciNet  Google Scholar 

  5. Anstreicher, K., Wolkowicz, H.: On Lagrangian relaxation of quadratic matrix constraints. SIAM J. Matrix Anal. Appl. 22(1), 41–55 (2000)

    Article  MathSciNet  Google Scholar 

  6. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons. Math. Program. 129(1), 129–157 (2011)

    Article  MathSciNet  Google Scholar 

  7. Beck, A., Eldar, Y.C.: Strong duality in nonconvex quadratic optimization with two quadratic constraints. SIAM J. Optim. 17(3), 844–860 (2006)

    Article  MathSciNet  Google Scholar 

  8. Ben-Tal, A., den Hertog, D.: Hidden conic quadratic representation of some nonconvex quadratic optimization problems. Math. Program. 143(1–2), 1–29 (2014)

    Article  MathSciNet  Google Scholar 

  9. Boyd, S., Vandenberghe, L.: Semidefinite programming relaxations of non-convex problems in control and combinatorial optimization. In: Paulraj, A., Roychowdhury, V., Schaper, C.D. (eds.) Communications, Computation, Control, and Signal Processing, pp. 279–287. Springer, Berlin (1997)

    Chapter  Google Scholar 

  10. Burer, S., Anstreicher, K.: Second-order-cone constraints for extended trust-region subproblems. SIAM J. Optim. 23(1), 432–451 (2013)

    Article  MathSciNet  Google Scholar 

  11. Burer, S., Saxena, A.: The MILP road to MIQCP. In: Leyffer, S., Lee, J. (eds.) Mixed Integer Nonlinear Programming, pp. 373–405. Springer, Berlin (2012)

    Chapter  Google Scholar 

  12. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113(2), 259–282 (2008)

    Article  MathSciNet  Google Scholar 

  13. Burer, S., Yang, B.: The trust region subproblem with non-intersecting linear constraints. Math. Program. 149(1–2), 253–264 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Celis, M., Dennis, J., Tapia, R.: A trust region strategy for nonlinear equality constrained optimization. Numer. Optim. 1984, 71–82 (1985)

    MathSciNet  MATH  Google Scholar 

  15. Cui, X., Zheng, X., Zhu, S., Sun, X.: Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems. J. Glob. Optim. 56(4), 1409–1423 (2013)

    Article  MathSciNet  Google Scholar 

  16. Fujie, T., Kojima, M.: Semidefinite programming relaxation for nonconvex quadratic programs. J. Glob. Optim. 10(4), 367–380 (1997)

    Article  MathSciNet  Google Scholar 

  17. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM (JACM) 42(6), 1115–1145 (1995)

    Article  MathSciNet  Google Scholar 

  18. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V., Boyd, S., Kimura, H. (eds.) Recent Advances in Learning and Control. Lecture Notes in Control and Information Sciences, pp. 95–110. Springer, Berlin (2008). https://web.stanford.edu/~boyd/papers/graph_dcp.html

  19. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx, September 2013

  20. Horn, R.A., Zhang, F.: Basic properties of the Schur complement. In: Zhang, F. (ed.) The Schur Complement and Its Applications, pp. 17–46. Springer, Berlin (2005)

    Chapter  Google Scholar 

  21. Jin, Q., Tian, Y., Deng, Z., Fang, S.C., Xing, W.: Exact computable representation of some second-order cone constrained quadratic programming problems. J. Oper. Res. Soc. China 1(1), 107–134 (2013)

    Article  Google Scholar 

  22. Kim, S., Kojima, M., Toh, K.C.: A Lagrangian-DNN relaxation: a fast method for computing tight lower bounds for a class of quadratic optimization problems. Math. Program. 156(1–2), 161–187 (2016)

    Article  MathSciNet  Google Scholar 

  23. Linderoth, J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program. 103(2), 251–282 (2005)

    Article  MathSciNet  Google Scholar 

  24. Luo, Z.Q., Ma, W.K., So, A.M.C., Ye, Y., Zhang, S.: Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process. Mag. 27(3), 20–34 (2010)

    Article  Google Scholar 

  25. Mathiesen, L.: Computational experience in solving equilibrium models by a sequence of linear complementarity problems. Oper. Res. 33(6), 1225–1250 (1985)

    Article  MathSciNet  Google Scholar 

  26. Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is NP-hard. J. Glob. Optim. 1(1), 15–22 (1991)

    Article  MathSciNet  Google Scholar 

  27. Qualizza, A., Belotti, P., Margot, F.: Linear programming relaxations of quadratically constrained quadratic programs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, pp. 407–426. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-1927-3_14

    Chapter  MATH  Google Scholar 

  28. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems, vol. 31. Springer, Berlin (2013)

    MATH  Google Scholar 

  29. Sherali, H.D., Fraticelli, B.M.: Enhancing RLT relaxations via a new class of semidefinite cuts. J. Glob. Optim. 22(1–4), 233–261 (2002)

    Article  MathSciNet  Google Scholar 

  30. Shor, N.Z.: Quadratic optimization problems. Sov. J. Comput. Syst. Sci. 25(6), 1–11 (1987)

    MathSciNet  MATH  Google Scholar 

  31. Sturm, J.F., Zhang, S.: On cones of nonnegative quadratic functions. Math. Oper. Res 28(2), 246–267 (2003)

    Article  MathSciNet  Google Scholar 

  32. Vavasis, S.A.: Quadratic programming is in NP. Inf. Process. Lett. 36(2), 73–77 (1990)

    Article  MathSciNet  Google Scholar 

  33. Xia, Y., Wang, S., Sheu, R.L.: S-lemma with equality and its applications. Math. Program. 156(1–2), 513–547 (2016)

    Article  MathSciNet  Google Scholar 

  34. Yang, B., Burer, S.: A two-variable approach to the two-trust-region subproblem. Manuscript, University of Iowa, February (2013)

  35. Ye, Y., Zhang, S.: New results on quadratic minimization. SIAM J. Optim. 14(1), 245–267 (2003)

    Article  MathSciNet  Google Scholar 

  36. Zheng, X.J., Sun, X.L., Li, D.: Convex relaxations for nonconvex quadratically constrained quadratic programming: matrix cone decomposition and polyhedral approximation. Math. Program. 129(2), 301–329 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of Shanghai Sailing 1004 Program 18YF1401700, Natural Science Foundation of China (NSFC) 11801087 and 11701106, and Hong Kong Research Grants Council under Grant 14213716. The authors would like to express their great appreciation to an anonymous referee for his/her constructive and insightful comments which help improve the paper significantly. The second author is also grateful to the support from Patrick Huen Wing Ming Chair Professorship of Systems Engineering and Engineering Management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, R., Li, D. Second order cone constrained convex relaxations for nonconvex quadratically constrained quadratic programming. J Glob Optim 75, 461–494 (2019). https://doi.org/10.1007/s10898-019-00793-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00793-y

Keywords

Mathematics Subject Classification

Navigation