Skip to main content
Log in

DFT Studies on Interaction of H2S Gas with α-Fe2O3 Nanostructures

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The structural stability, electronic properties and adsorption characteristics of H2S on pristine, Ag and Pd substituted α-Fe2O3 nanostructures are studied using density functional theory along with B3LYP/LanL2DZ basis set. The structural stability of α-Fe2O3 nanostructures are studied in terms of formation energy. The electronic properties of pristine, Ag and Pd substituted α-Fe2O3 nanostructures are studied with ionization potential, electron affinity and HOMO–LUMO gap. The adsorption properties of H2S on Fe2O3 are analyzed and the favorable adsorption sites are reported. The key parameters such as Mulliken population analysis, energy gap, adsorbed energy and average energy gap variation are used to identify the favorable site of H2S adsorption on Fe2O3. α-Fe2O3 nanostructure can be tailored with suitable substitution impurities to enhance the adsorption characteristics of H2S on Fe2O3 nanostructures in the mixed gas environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.-H. Tao, C.-H. Tsai, Sens. Actuators B 81, 237 (2002)

    Article  CAS  Google Scholar 

  2. J. Xu, X. Wang, J. Shen, Sens. Actuators B 115, 642 (2006)

    Article  CAS  Google Scholar 

  3. C. Wang, X. Chu, M. Wu, Sens. Actuators B 113, 320 (2006)

    Article  CAS  Google Scholar 

  4. K.I. Gnanasekar, V. Jayaraman, E. Prabhu, T. Gnanasekaran, G. Periaswami, Sens. Actuators B 55, 170 (1999)

    Article  CAS  Google Scholar 

  5. Y.L. Liu, H. Wang, Y. Yang, Z.M. Liu, H.F. Yang, G.L. Shen et al., Sens. Actuators B 102, 148 (2004)

    Article  CAS  Google Scholar 

  6. P. Zhang, Z.P. Guo, H.K. Liu, Electrochim. Acta 55, 8521 (2010)

    Article  CAS  Google Scholar 

  7. X. Liu, J. Zhang, X. Guo, S. Wu, S. Wang, Nanotechnology. 21, 095501 (2010)

    Article  CAS  Google Scholar 

  8. J. Ma, J. Lian, X. Duan, X. Liu, W. Zheng, J. Phys. Chem. C 114, 10671 (2010)

    Article  CAS  Google Scholar 

  9. L. Li, Y. Chu, Y. Liu, L. Dong, J. Phys. Chem. C 111, 2123 (2007)

    Article  CAS  Google Scholar 

  10. F. Bondioli, A. Ferrari, C. Leonelli, T. Manfredini, Mater. Res. Bull. 33, 723 (1998)

    Article  CAS  Google Scholar 

  11. L. Liu, H. Kou, W. Mo, H. Liu, Y. Wang, J. Phys. Chem. B 110, 15218 (2006)

    Article  CAS  Google Scholar 

  12. Y. Zheng, Y. Cheng, Y. Wang, F. Bao, L. Zhou, X. Wei et al., J. Phys. Chem. B 110, 3093 (2006)

    Article  CAS  Google Scholar 

  13. S. Cao, Y. Zhu, J. Phys. Chem. C 112, 6253 (2008)

    Article  CAS  Google Scholar 

  14. X. Wen, S. Wang, Y. Ding, Z. Lin Wang, S. Yang, J. Phys. Chem. B 109, 215 (2005)

    Article  CAS  Google Scholar 

  15. S.W. Cao, Y.J. Zhu, J. Phys. Chem. C 112, 12149 (2008)

    Article  CAS  Google Scholar 

  16. S. Zeng, K. Tang, T. Li, Z. Liang, D. Wang, Y. Wang et al., J. Phys. Chem. C 112, 4836 (2008)

    Article  CAS  Google Scholar 

  17. M.F. Casula, Y.W. Jun, D.J. Zaziski, E.M. Chan, A. Corrias, A.P. Alivisatos, J. Am. Chem. Soc. 128, 1675 (2006)

    Article  CAS  Google Scholar 

  18. Z. Zhang, H. Jiang, Z. Xing, X. Zhang, Sens. Actuators B 102, 155–161 (2004)

    Article  CAS  Google Scholar 

  19. Z.Y. Sun, H.Q. Yuan, Z.M. Liu, B.X. Han, X.R. Zhang, Adv. Mater. 17, 2993 (2005)

    Article  CAS  Google Scholar 

  20. A.C. Bose, P. Thangadurai, S. Ramasamy, Mater. Chem. Phys. 95, 72 (2006)

    Article  CAS  Google Scholar 

  21. Q. Hao, L. Li, X. Yin, S. Liu, Q. Li, T. Wang, Mater. Sci. Eng. B 176, 600 (2011)

  22. S. Wang, L. Wang, T. Yang, X. Liu, J. Zhang, B. Zhu et al., J. Solid State Chem. 183, 2869 (2010)

    Article  CAS  Google Scholar 

  23. Y. Wang, S. Wang, Y. Zhao, B. Zhu, F. Kong, D. Wang et al. Sens. Actuators. B 125, 79 (2007)

    Article  CAS  Google Scholar 

  24. Y. Wang, F. Kong, B. Zhu, S. Wang, S. Wu, W. Huang, Mater. Sci. Eng. B 140, 98 (2007)

  25. P. Sun, C. Wang, X. Zhou, P. Cheng, K. Shimanoe, G. Lu et al., Sens. Actuators B 193, 616 (2014)

    Article  CAS  Google Scholar 

  26. T.C. Dinadayalane, G. Paytakov, J. Leszczynski, J. Mol. Model. 19, 2855 (2013)

    Article  CAS  Google Scholar 

  27. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A.Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels,Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford, CT (2009)

  28. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  CAS  Google Scholar 

  29. A.D. Becke, J. Chem. Phys. 98, 1372 (1993)

    Article  CAS  Google Scholar 

  30. N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, J. Comp. Chem. 29, 839 (2008)

    Article  CAS  Google Scholar 

  31. S. Sriram, R. Chandiramouli, B.G. Jeyaprakash, Struct. Chem. 25, 389 (2014)

    Article  CAS  Google Scholar 

  32. S. Sriram, R. Chandiramouli, D. Balamurugan, A. Thayumanvan, Eur. Phys. J. Appl. Phys. 62, 30101 (2013)

    Article  CAS  Google Scholar 

  33. V. Nagarajan, R. Chandiramouli, Alexandria Eng. J. 53, 437 (2014)

    Article  Google Scholar 

  34. V. Nagarajan, R. Chandiramouli, Ceram. Int. 40, 16147 (2014)

    Article  CAS  Google Scholar 

  35. S.T. Navale, D.K. Bandgar, S.R. Nalage, G.D. Khuspe, M.A. Chougule, Y.D. Kolekar et al., Ceram. Int. 39, 6453 (2013)

    Article  CAS  Google Scholar 

  36. Y. Cao, H. Luo, D. Jia, Sens. Actuators. B 176, 618 (2013)

    Article  CAS  Google Scholar 

  37. Y. Wang, Y. Wang, J. Cao, F. Kong, H. Xia, J. Zhang et al., Sens. Actuators. B 131, 183 (2008)

    Article  CAS  Google Scholar 

  38. V. Nagarajan, R. Chandiramouli, Struct. Chem. 25, 1765 (2014)

    Article  CAS  Google Scholar 

  39. V. Nagarajan, R. Chandiramouli, Comput. Theor. Chem 1049, 20 (2014)

    Article  CAS  Google Scholar 

  40. V. Nagarajan, R. Chandiramouli, J. Inorg. Organomet. Polym. 24, 1038 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chandiramouli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarajan, V., Chandiramouli, R. DFT Studies on Interaction of H2S Gas with α-Fe2O3 Nanostructures. J Inorg Organomet Polym 26, 394–404 (2016). https://doi.org/10.1007/s10904-016-0331-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-016-0331-9

Keywords

Navigation